{"title":"由水溶性介导的生物累积导致有机磷杀虫剂对斑马鱼(Danio rerio)急性毒性的差异。","authors":"Yujuan Liu, Yue Xu, Bingjie Yuan, Bingyu Zhu, Xiaobing Zhang, Jinyin Chen, Beixing Li, Wei Mu","doi":"10.1007/s10646-024-02775-7","DOIUrl":null,"url":null,"abstract":"<p><p>The use of some organophosphate insecticides is restricted or even banned in paddy fields due to their high toxicity to aquatic organisms. The aim of this study is to elucidate the main pathways and target organs of organophosphate insecticide toxicity to fish exposed via different routes by integrating histopathological and biochemical techniques. Using malathion as the model drug, when the dosage is 20-60 mg/L, the toxicity of whole body and head immersion drugs to zebrafish is much higher than that of trunk immersion drugs. A dose of 21.06-190.44 mg/kg of malathion feed was fed to adult zebrafish. Although the dosage was already high, no obvious toxicity was observed. Therefore, we believe that the drug mainly enters the fish body through the gills. When exposed to a drug solution of 20 mg/L and 60 mg/L, the fish showed significant neurological behavioral abnormalities, and the pathological damage to key organs and brain tissue was the most severe, showing obvious vacuolization and the highest residual amount (8.72-47.78 mg/L). The activity of acetylcholinesterase was the most inhibited (54.69-74.68%). Therefore, brain tissue is the key toxic target organ of malathion in fish. In addition, we compared the bioaccumulation effects of different water-soluble organophosphorus insecticides in fish and their toxic effects. We found that the higher the water solubility of organophosphorus insecticides, the lower their toxicity to fish.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"750-761"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioaccumulation mediated by water solubility leads to differences in the acute toxicity of organophosphorus insecticides to zebrafish (Danio rerio).\",\"authors\":\"Yujuan Liu, Yue Xu, Bingjie Yuan, Bingyu Zhu, Xiaobing Zhang, Jinyin Chen, Beixing Li, Wei Mu\",\"doi\":\"10.1007/s10646-024-02775-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of some organophosphate insecticides is restricted or even banned in paddy fields due to their high toxicity to aquatic organisms. The aim of this study is to elucidate the main pathways and target organs of organophosphate insecticide toxicity to fish exposed via different routes by integrating histopathological and biochemical techniques. Using malathion as the model drug, when the dosage is 20-60 mg/L, the toxicity of whole body and head immersion drugs to zebrafish is much higher than that of trunk immersion drugs. A dose of 21.06-190.44 mg/kg of malathion feed was fed to adult zebrafish. Although the dosage was already high, no obvious toxicity was observed. Therefore, we believe that the drug mainly enters the fish body through the gills. When exposed to a drug solution of 20 mg/L and 60 mg/L, the fish showed significant neurological behavioral abnormalities, and the pathological damage to key organs and brain tissue was the most severe, showing obvious vacuolization and the highest residual amount (8.72-47.78 mg/L). The activity of acetylcholinesterase was the most inhibited (54.69-74.68%). Therefore, brain tissue is the key toxic target organ of malathion in fish. In addition, we compared the bioaccumulation effects of different water-soluble organophosphorus insecticides in fish and their toxic effects. We found that the higher the water solubility of organophosphorus insecticides, the lower their toxicity to fish.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\" \",\"pages\":\"750-761\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-024-02775-7\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02775-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Bioaccumulation mediated by water solubility leads to differences in the acute toxicity of organophosphorus insecticides to zebrafish (Danio rerio).
The use of some organophosphate insecticides is restricted or even banned in paddy fields due to their high toxicity to aquatic organisms. The aim of this study is to elucidate the main pathways and target organs of organophosphate insecticide toxicity to fish exposed via different routes by integrating histopathological and biochemical techniques. Using malathion as the model drug, when the dosage is 20-60 mg/L, the toxicity of whole body and head immersion drugs to zebrafish is much higher than that of trunk immersion drugs. A dose of 21.06-190.44 mg/kg of malathion feed was fed to adult zebrafish. Although the dosage was already high, no obvious toxicity was observed. Therefore, we believe that the drug mainly enters the fish body through the gills. When exposed to a drug solution of 20 mg/L and 60 mg/L, the fish showed significant neurological behavioral abnormalities, and the pathological damage to key organs and brain tissue was the most severe, showing obvious vacuolization and the highest residual amount (8.72-47.78 mg/L). The activity of acetylcholinesterase was the most inhibited (54.69-74.68%). Therefore, brain tissue is the key toxic target organ of malathion in fish. In addition, we compared the bioaccumulation effects of different water-soluble organophosphorus insecticides in fish and their toxic effects. We found that the higher the water solubility of organophosphorus insecticides, the lower their toxicity to fish.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.