{"title":"槲皮素通过抑制铁氧化酶和铜氧化酶减轻顺铂引起的急性肾损伤","authors":"Mengqi Shi, Youchaou Mobet, Hong Shen","doi":"10.1007/s12013-024-01379-6","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis, an iron- and ROS-dependent form of regulated cell death. Cuproptosis is a novel form of cellular demise mode. Quercetin, a natural flavonoid, has demonstrated a range of pharmacological activities, including anti-cancer, anti-inflammatory, and antioxidant properties. In this research, we investigated the quercetin effect on cisplatin-induced acute kidney and its mechanism associated ferroptosis and cuproptosis. The HK-2 cells were used in this research. Cell viability was evaluated using the CCK-8 assay. Acute kidney injury (AKI) models were established to perform in vivo experiments. Renal tissue homogenate was used to determine ROS, LPO, MDA, PA, etc., to assess ferroptosis and cuproptosis. To perform bioinformatic analysis, microarray data from the GEO database was utilized. Real-time PCR analysis and ELISA was explored the mechanism of ferroptosis and cuproptosis. We found that ferroptosis and cuproptosis in AKI were abnormally activated caused by cisplatin, and that quercetin attenuated AKI by inhibiting ferroptosis and cuproptosis. QCT suppressed ferroptosis by reducing malondialdehyde (MDA) and ROS levels and increasing glutathione (GSH) levels and alleviated cuproptosis by reducing copper ion, pyruvate (PA) and HSP70 levels. Moreover, bioinformatic analysis revealed that the ferroptosis-related gene SLC7A11 and the cuproptosis-related genes ATP7B and GLS were the differential expression genes. And QCT significantly increased the expression or activity of SLC7A11, GPX4, ATP7B, and GLS in Cis-AKI mice. Our findings highlight the clinical importance of quercetin, which guards against cisplatin-induced acute kidney injury by suppressing ferroptosis and cuproptosis.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quercetin Attenuates Acute Kidney Injury Caused by Cisplatin by Inhibiting Ferroptosis and Cuproptosis.\",\"authors\":\"Mengqi Shi, Youchaou Mobet, Hong Shen\",\"doi\":\"10.1007/s12013-024-01379-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis, an iron- and ROS-dependent form of regulated cell death. Cuproptosis is a novel form of cellular demise mode. Quercetin, a natural flavonoid, has demonstrated a range of pharmacological activities, including anti-cancer, anti-inflammatory, and antioxidant properties. In this research, we investigated the quercetin effect on cisplatin-induced acute kidney and its mechanism associated ferroptosis and cuproptosis. The HK-2 cells were used in this research. Cell viability was evaluated using the CCK-8 assay. Acute kidney injury (AKI) models were established to perform in vivo experiments. Renal tissue homogenate was used to determine ROS, LPO, MDA, PA, etc., to assess ferroptosis and cuproptosis. To perform bioinformatic analysis, microarray data from the GEO database was utilized. Real-time PCR analysis and ELISA was explored the mechanism of ferroptosis and cuproptosis. We found that ferroptosis and cuproptosis in AKI were abnormally activated caused by cisplatin, and that quercetin attenuated AKI by inhibiting ferroptosis and cuproptosis. QCT suppressed ferroptosis by reducing malondialdehyde (MDA) and ROS levels and increasing glutathione (GSH) levels and alleviated cuproptosis by reducing copper ion, pyruvate (PA) and HSP70 levels. Moreover, bioinformatic analysis revealed that the ferroptosis-related gene SLC7A11 and the cuproptosis-related genes ATP7B and GLS were the differential expression genes. And QCT significantly increased the expression or activity of SLC7A11, GPX4, ATP7B, and GLS in Cis-AKI mice. Our findings highlight the clinical importance of quercetin, which guards against cisplatin-induced acute kidney injury by suppressing ferroptosis and cuproptosis.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01379-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01379-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Quercetin Attenuates Acute Kidney Injury Caused by Cisplatin by Inhibiting Ferroptosis and Cuproptosis.
Ferroptosis, an iron- and ROS-dependent form of regulated cell death. Cuproptosis is a novel form of cellular demise mode. Quercetin, a natural flavonoid, has demonstrated a range of pharmacological activities, including anti-cancer, anti-inflammatory, and antioxidant properties. In this research, we investigated the quercetin effect on cisplatin-induced acute kidney and its mechanism associated ferroptosis and cuproptosis. The HK-2 cells were used in this research. Cell viability was evaluated using the CCK-8 assay. Acute kidney injury (AKI) models were established to perform in vivo experiments. Renal tissue homogenate was used to determine ROS, LPO, MDA, PA, etc., to assess ferroptosis and cuproptosis. To perform bioinformatic analysis, microarray data from the GEO database was utilized. Real-time PCR analysis and ELISA was explored the mechanism of ferroptosis and cuproptosis. We found that ferroptosis and cuproptosis in AKI were abnormally activated caused by cisplatin, and that quercetin attenuated AKI by inhibiting ferroptosis and cuproptosis. QCT suppressed ferroptosis by reducing malondialdehyde (MDA) and ROS levels and increasing glutathione (GSH) levels and alleviated cuproptosis by reducing copper ion, pyruvate (PA) and HSP70 levels. Moreover, bioinformatic analysis revealed that the ferroptosis-related gene SLC7A11 and the cuproptosis-related genes ATP7B and GLS were the differential expression genes. And QCT significantly increased the expression or activity of SLC7A11, GPX4, ATP7B, and GLS in Cis-AKI mice. Our findings highlight the clinical importance of quercetin, which guards against cisplatin-induced acute kidney injury by suppressing ferroptosis and cuproptosis.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.