环形磁性纳米点中的主要高阶涡旋回旋。

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Artem V. Bondarenko, Sergey A. Bunyaev, Amit K. Shukla, Arlete Apolinario, Navab Singh, David Navas, Konstantin Y. Guslienko, Adekunle O. Adeyeye and Gleb N. Kakazei
{"title":"环形磁性纳米点中的主要高阶涡旋回旋。","authors":"Artem V. Bondarenko, Sergey A. Bunyaev, Amit K. Shukla, Arlete Apolinario, Navab Singh, David Navas, Konstantin Y. Guslienko, Adekunle O. Adeyeye and Gleb N. Kakazei","doi":"10.1039/D4NH00145A","DOIUrl":null,"url":null,"abstract":"<p >The transition to the third dimension enables the creation of spintronic nanodevices with significantly enhanced functionality compared to traditional 2D magnetic applications. In this study, we extend common two-dimensional magnetic vortex configurations, which are known for their efficient dynamical response to external stimuli without a bias magnetic field, into the third dimension. This extension results in a substantial increase in vortex frequency, reaching up to 5 GHz, compared to the typical sub-GHz range observed in planar vortex oscillators. A systematic study reveals a complex pattern of vortex excitation modes, explaining the decrease in the lowest gyrotropic mode frequency, the inversion of vortex mode intensities, and the nontrivial spatial distribution of vortex dynamical magnetization noted in previous research. These phenomena enable the optimization of both oscillation frequency and frequency reproducibility, minimizing the impact of uncontrolled size variations in those magnetic nanodevices.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1498-1505"},"PeriodicalIF":8.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominant higher-order vortex gyromodes in circular magnetic nanodots†\",\"authors\":\"Artem V. Bondarenko, Sergey A. Bunyaev, Amit K. Shukla, Arlete Apolinario, Navab Singh, David Navas, Konstantin Y. Guslienko, Adekunle O. Adeyeye and Gleb N. Kakazei\",\"doi\":\"10.1039/D4NH00145A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The transition to the third dimension enables the creation of spintronic nanodevices with significantly enhanced functionality compared to traditional 2D magnetic applications. In this study, we extend common two-dimensional magnetic vortex configurations, which are known for their efficient dynamical response to external stimuli without a bias magnetic field, into the third dimension. This extension results in a substantial increase in vortex frequency, reaching up to 5 GHz, compared to the typical sub-GHz range observed in planar vortex oscillators. A systematic study reveals a complex pattern of vortex excitation modes, explaining the decrease in the lowest gyrotropic mode frequency, the inversion of vortex mode intensities, and the nontrivial spatial distribution of vortex dynamical magnetization noted in previous research. These phenomena enable the optimization of both oscillation frequency and frequency reproducibility, minimizing the impact of uncontrolled size variations in those magnetic nanodevices.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" 9\",\"pages\":\" 1498-1505\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00145a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00145a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

与传统的二维磁性应用相比,向三维的过渡能够创造出功能显著增强的自旋电子纳米器件。在这项研究中,我们将常见的二维磁涡旋配置扩展到了三维空间,这些配置因其在没有偏置磁场的情况下对外部刺激做出高效的动态响应而闻名。与在平面涡旋振荡器中观察到的典型亚千赫范围相比,这种扩展使涡旋频率大幅提高,最高可达 5 千兆赫。系统性研究揭示了涡旋激发模式的复杂模式,解释了最低陀螺模式频率的降低、涡旋模式强度的反转以及之前研究中注意到的涡旋动态磁化的非三维空间分布。这些现象使振荡频率和频率再现性得以优化,最大程度地减少了这些磁性纳米器件中不受控制的尺寸变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dominant higher-order vortex gyromodes in circular magnetic nanodots†

Dominant higher-order vortex gyromodes in circular magnetic nanodots†

Dominant higher-order vortex gyromodes in circular magnetic nanodots†

The transition to the third dimension enables the creation of spintronic nanodevices with significantly enhanced functionality compared to traditional 2D magnetic applications. In this study, we extend common two-dimensional magnetic vortex configurations, which are known for their efficient dynamical response to external stimuli without a bias magnetic field, into the third dimension. This extension results in a substantial increase in vortex frequency, reaching up to 5 GHz, compared to the typical sub-GHz range observed in planar vortex oscillators. A systematic study reveals a complex pattern of vortex excitation modes, explaining the decrease in the lowest gyrotropic mode frequency, the inversion of vortex mode intensities, and the nontrivial spatial distribution of vortex dynamical magnetization noted in previous research. These phenomena enable the optimization of both oscillation frequency and frequency reproducibility, minimizing the impact of uncontrolled size variations in those magnetic nanodevices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信