{"title":"投影性质和可计算类型","authors":"Djamel Eddine Amir, Mathieu Hoyrup","doi":"10.1016/j.topol.2024.109020","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a detailed study of two properties of spaces and pairs of spaces, the surjection property and the <em>ϵ</em>-surjection property, that were recently introduced to characterize the notion of computable type arising from computability theory. For a class of spaces including the finite simplicial complexes, we develop techniques to prove or disprove these properties using homotopy and homology theories, and give applications of these results. In particular, we answer an open question on the computable type property, showing that it is not preserved by taking products. We also observe that computable type is decidable for finite simplicial complexes.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The surjection property and computable type\",\"authors\":\"Djamel Eddine Amir, Mathieu Hoyrup\",\"doi\":\"10.1016/j.topol.2024.109020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide a detailed study of two properties of spaces and pairs of spaces, the surjection property and the <em>ϵ</em>-surjection property, that were recently introduced to characterize the notion of computable type arising from computability theory. For a class of spaces including the finite simplicial complexes, we develop techniques to prove or disprove these properties using homotopy and homology theories, and give applications of these results. In particular, we answer an open question on the computable type property, showing that it is not preserved by taking products. We also observe that computable type is decidable for finite simplicial complexes.</p></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124002050\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002050","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We provide a detailed study of two properties of spaces and pairs of spaces, the surjection property and the ϵ-surjection property, that were recently introduced to characterize the notion of computable type arising from computability theory. For a class of spaces including the finite simplicial complexes, we develop techniques to prove or disprove these properties using homotopy and homology theories, and give applications of these results. In particular, we answer an open question on the computable type property, showing that it is not preserved by taking products. We also observe that computable type is decidable for finite simplicial complexes.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.