M. Batu Özmeteler , Deborah Bilgic , Guanru Pan , Alexander Koch , Timm Faulwasser
{"title":"多能源系统随机预测控制的数据驱动不确定性传播","authors":"M. Batu Özmeteler , Deborah Bilgic , Guanru Pan , Alexander Koch , Timm Faulwasser","doi":"10.1016/j.ejcon.2024.101066","DOIUrl":null,"url":null,"abstract":"<div><div>Stochastic predictive control schemes that account for epistemic and aleatoric uncertainties, i.e. lack of model knowledge and stochastic disturbances, are of major interest for multi-energy systems. However, there exists a trade-off between model complexity, computational effort, and accuracy of uncertainty quantification. This paper attempts to assess this trade-off by comparing a recently proposed approach combining Willems’ fundamental lemma with polynomial chaos expansion to a model-based scheme that first propagates uncertainty with PCE and then considers chance constraints in the optimization. The simulation results show that the data-driven scheme yields similar performance and computational efficiency compared to the model-based scheme, with the advantage of avoiding the construction of explicit models.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101066"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven uncertainty propagation for stochastic predictive control of multi-energy systems\",\"authors\":\"M. Batu Özmeteler , Deborah Bilgic , Guanru Pan , Alexander Koch , Timm Faulwasser\",\"doi\":\"10.1016/j.ejcon.2024.101066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stochastic predictive control schemes that account for epistemic and aleatoric uncertainties, i.e. lack of model knowledge and stochastic disturbances, are of major interest for multi-energy systems. However, there exists a trade-off between model complexity, computational effort, and accuracy of uncertainty quantification. This paper attempts to assess this trade-off by comparing a recently proposed approach combining Willems’ fundamental lemma with polynomial chaos expansion to a model-based scheme that first propagates uncertainty with PCE and then considers chance constraints in the optimization. The simulation results show that the data-driven scheme yields similar performance and computational efficiency compared to the model-based scheme, with the advantage of avoiding the construction of explicit models.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"80 \",\"pages\":\"Article 101066\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024001262\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001262","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Data-driven uncertainty propagation for stochastic predictive control of multi-energy systems
Stochastic predictive control schemes that account for epistemic and aleatoric uncertainties, i.e. lack of model knowledge and stochastic disturbances, are of major interest for multi-energy systems. However, there exists a trade-off between model complexity, computational effort, and accuracy of uncertainty quantification. This paper attempts to assess this trade-off by comparing a recently proposed approach combining Willems’ fundamental lemma with polynomial chaos expansion to a model-based scheme that first propagates uncertainty with PCE and then considers chance constraints in the optimization. The simulation results show that the data-driven scheme yields similar performance and computational efficiency compared to the model-based scheme, with the advantage of avoiding the construction of explicit models.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.