Muhammad Nafees;Shenjie Huang;John Thompson;Majid Safari
{"title":"混合 FSO-RF 网络中的回程感知无人机辅助容量增强","authors":"Muhammad Nafees;Shenjie Huang;John Thompson;Majid Safari","doi":"10.1109/OJCOMS.2024.3428925","DOIUrl":null,"url":null,"abstract":"Future networks are expected to make substantial use of unmanned aerial vehicles (UAVs) as aerial base stations (BSs). The backhauling of UAVs is often considered with license-free and highbandwidth free-space optical (FSO) communication. Employing UAVs and FSO technology together is appropriate for numerous applications such as user offloading, network capacity enhancement, and relaying services. However, the reliability of the backhaul FSO link can be jeopardized by infrequent adverse weather conditions such as fog. In this study, we proposed the capacity enhancement of a ground BS (GBS) with the aid of an FSO-backhualed UAV aerial BS. In particular, we optimize the UAV’s circular trajectory and parameters (i.e., coverage radius and beamwidth) to maximize the total network throughput during both normal and adverse weather (e.g., fog events). Two trajectories, namely rate maximization (RMT) and fairness-constrained rate maximization (FRMT), are considered. A novel expression for the average capacity of the FSO backhaul over the entire trajectory is derived. The formulated problem aims to maximize the average network throughput with constraints pertaining to backhaul capacity, network fairness, and UAV parameters. It is shown that the UAV changes its trajectory using its coverage radius and directional antenna beamwidth according to the weather conditions and fairness requirements to maximize the total system capacity. Furthermore, real weather data from the cities of Edinburgh and London in the U.K. is used to evaluate the performance of the system under low-visibility conditions. The numerical results show the proposed FSO-backhauled UAV can provide significant capacity enhancement even in thin, light, and moderately foggy conditions.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599221","citationCount":"0","resultStr":"{\"title\":\"Backhaul-Aware UAV-Aided Capacity Enhancement in Mixed FSO-RF Network\",\"authors\":\"Muhammad Nafees;Shenjie Huang;John Thompson;Majid Safari\",\"doi\":\"10.1109/OJCOMS.2024.3428925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future networks are expected to make substantial use of unmanned aerial vehicles (UAVs) as aerial base stations (BSs). The backhauling of UAVs is often considered with license-free and highbandwidth free-space optical (FSO) communication. Employing UAVs and FSO technology together is appropriate for numerous applications such as user offloading, network capacity enhancement, and relaying services. However, the reliability of the backhaul FSO link can be jeopardized by infrequent adverse weather conditions such as fog. In this study, we proposed the capacity enhancement of a ground BS (GBS) with the aid of an FSO-backhualed UAV aerial BS. In particular, we optimize the UAV’s circular trajectory and parameters (i.e., coverage radius and beamwidth) to maximize the total network throughput during both normal and adverse weather (e.g., fog events). Two trajectories, namely rate maximization (RMT) and fairness-constrained rate maximization (FRMT), are considered. A novel expression for the average capacity of the FSO backhaul over the entire trajectory is derived. The formulated problem aims to maximize the average network throughput with constraints pertaining to backhaul capacity, network fairness, and UAV parameters. It is shown that the UAV changes its trajectory using its coverage radius and directional antenna beamwidth according to the weather conditions and fairness requirements to maximize the total system capacity. Furthermore, real weather data from the cities of Edinburgh and London in the U.K. is used to evaluate the performance of the system under low-visibility conditions. The numerical results show the proposed FSO-backhauled UAV can provide significant capacity enhancement even in thin, light, and moderately foggy conditions.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599221\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10599221/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10599221/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Backhaul-Aware UAV-Aided Capacity Enhancement in Mixed FSO-RF Network
Future networks are expected to make substantial use of unmanned aerial vehicles (UAVs) as aerial base stations (BSs). The backhauling of UAVs is often considered with license-free and highbandwidth free-space optical (FSO) communication. Employing UAVs and FSO technology together is appropriate for numerous applications such as user offloading, network capacity enhancement, and relaying services. However, the reliability of the backhaul FSO link can be jeopardized by infrequent adverse weather conditions such as fog. In this study, we proposed the capacity enhancement of a ground BS (GBS) with the aid of an FSO-backhualed UAV aerial BS. In particular, we optimize the UAV’s circular trajectory and parameters (i.e., coverage radius and beamwidth) to maximize the total network throughput during both normal and adverse weather (e.g., fog events). Two trajectories, namely rate maximization (RMT) and fairness-constrained rate maximization (FRMT), are considered. A novel expression for the average capacity of the FSO backhaul over the entire trajectory is derived. The formulated problem aims to maximize the average network throughput with constraints pertaining to backhaul capacity, network fairness, and UAV parameters. It is shown that the UAV changes its trajectory using its coverage radius and directional antenna beamwidth according to the weather conditions and fairness requirements to maximize the total system capacity. Furthermore, real weather data from the cities of Edinburgh and London in the U.K. is used to evaluate the performance of the system under low-visibility conditions. The numerical results show the proposed FSO-backhauled UAV can provide significant capacity enhancement even in thin, light, and moderately foggy conditions.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.