饱和与吸收对克尔型非线性层传输特性的影响

IF 1.5 4区 物理与天体物理 Q3 OPTICS
C. A. Betancur-Yepes, J. D. Mazo-Vásquez, E. Reyes-Gómez
{"title":"饱和与吸收对克尔型非线性层传输特性的影响","authors":"C. A. Betancur-Yepes,&nbsp;J. D. Mazo-Vásquez,&nbsp;E. Reyes-Gómez","doi":"10.1140/epjd/s10053-024-00889-5","DOIUrl":null,"url":null,"abstract":"<p>The effects of absorption and saturation on soliton states in Kerr-type nonlinear layers are theoretically investigated. In addition to the usual gray and bright soliton structures observed in nonlinear slabs, a flat soliton, i.e., a particular soliton excitation with electric field amplitude independent of the position within the layer, is researched in cases of self-defocusing and self-focusing nonlinearities. Effects caused by the combination of absorption and saturation, such as the shift and extinction of the flat soliton peak, the decrease in the amplitude of the electric field within the nonlinear layer, and the suppression of the multistable behavior of the transmission coefficient in the vicinity of the soliton peaks, are discussed. The present theoretical results are compared and found in good quantitative agreement with previous experimental measurements.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjd/s10053-024-00889-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Saturation and absorption effects on the transmission properties of Kerr-type nonlinear layers\",\"authors\":\"C. A. Betancur-Yepes,&nbsp;J. D. Mazo-Vásquez,&nbsp;E. Reyes-Gómez\",\"doi\":\"10.1140/epjd/s10053-024-00889-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effects of absorption and saturation on soliton states in Kerr-type nonlinear layers are theoretically investigated. In addition to the usual gray and bright soliton structures observed in nonlinear slabs, a flat soliton, i.e., a particular soliton excitation with electric field amplitude independent of the position within the layer, is researched in cases of self-defocusing and self-focusing nonlinearities. Effects caused by the combination of absorption and saturation, such as the shift and extinction of the flat soliton peak, the decrease in the amplitude of the electric field within the nonlinear layer, and the suppression of the multistable behavior of the transmission coefficient in the vicinity of the soliton peaks, are discussed. The present theoretical results are compared and found in good quantitative agreement with previous experimental measurements.</p>\",\"PeriodicalId\":789,\"journal\":{\"name\":\"The European Physical Journal D\",\"volume\":\"78 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjd/s10053-024-00889-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal D\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjd/s10053-024-00889-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00889-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 从理论上研究了吸收和饱和对 Kerr 型非线性层中孤子态的影响。除了在非线性板中观察到的通常的灰色和明亮的孤子结构外,还研究了自聚焦和自聚焦非线性情况下的平孤子,即电场振幅与层内位置无关的特定孤子激发。讨论了吸收和饱和相结合所产生的效应,如平坦孤子峰的移动和消亡、非线性层内电场振幅的减小以及孤子峰附近传输系数多稳态行为的抑制。通过比较发现,目前的理论结果与之前的实验测量结果在数量上非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Saturation and absorption effects on the transmission properties of Kerr-type nonlinear layers

Saturation and absorption effects on the transmission properties of Kerr-type nonlinear layers

The effects of absorption and saturation on soliton states in Kerr-type nonlinear layers are theoretically investigated. In addition to the usual gray and bright soliton structures observed in nonlinear slabs, a flat soliton, i.e., a particular soliton excitation with electric field amplitude independent of the position within the layer, is researched in cases of self-defocusing and self-focusing nonlinearities. Effects caused by the combination of absorption and saturation, such as the shift and extinction of the flat soliton peak, the decrease in the amplitude of the electric field within the nonlinear layer, and the suppression of the multistable behavior of the transmission coefficient in the vicinity of the soliton peaks, are discussed. The present theoretical results are compared and found in good quantitative agreement with previous experimental measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信