用于含富镍阴极材料的锂金属电池的锂保护金属阳极

Ridwan A. Ahmed, Kevin V. Carballo, Krishna P. Koirala, Qian Zhao, Peiyuan Gao, Ju-Myung Kim, Cassidy S. Anderson, Xiangbo Meng, Chongmin Wang, Ji-Guang Zhang, Wu Xu
{"title":"用于含富镍阴极材料的锂金属电池的锂保护金属阳极","authors":"Ridwan A. Ahmed, Kevin V. Carballo, Krishna P. Koirala, Qian Zhao, Peiyuan Gao, Ju-Myung Kim, Cassidy S. Anderson, Xiangbo Meng, Chongmin Wang, Ji-Guang Zhang, Wu Xu","doi":"10.1002/sstr.202400174","DOIUrl":null,"url":null,"abstract":"The high energy density advantage of lithium (Li) metal batteries (LMBs) makes them increasingly desirable; however, problems such as strong reactivity and dendrite growth of Li metal anode limit their practical uses. In this work, a novel Li-containing glycerol (LiGL) or lithicone protection layer on a 50 μm thick Li metal anode is employed for improving the performance of LMBs. This LiGL layer was accurately deposited via a molecular layer deposition (MLD) process at 150 °C, using lithium tert-butoxide and glycerol as precursors. The as-formed LiGL coating layer is highly tunable in its thickness by simply adjusting MLD cycles and shows a good stability and outstanding ionic transport properties. The LiGL layer is found to effectively mitigate side reactions and enhance cycling stability in both symmetric cells and full cells. Specifically, the LMBs with LiGL@Li anode of 400 MLD cycles and LiNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> cathode enable a capacity retention of ≈87%, much higher than ≈35% of the cells with bare Li after 200 cycles at a charge/discharge current density of 2.1 mA cm<sup>−2</sup>. This work paves a feasible way for practical LMBs with improved capacity and stability through applying an innovative protection layer on Li metal anodes.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithicone-Protected Lithium Metal Anodes for Lithium Metal Batteries with Nickel-Rich Cathode Materials\",\"authors\":\"Ridwan A. Ahmed, Kevin V. Carballo, Krishna P. Koirala, Qian Zhao, Peiyuan Gao, Ju-Myung Kim, Cassidy S. Anderson, Xiangbo Meng, Chongmin Wang, Ji-Guang Zhang, Wu Xu\",\"doi\":\"10.1002/sstr.202400174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high energy density advantage of lithium (Li) metal batteries (LMBs) makes them increasingly desirable; however, problems such as strong reactivity and dendrite growth of Li metal anode limit their practical uses. In this work, a novel Li-containing glycerol (LiGL) or lithicone protection layer on a 50 μm thick Li metal anode is employed for improving the performance of LMBs. This LiGL layer was accurately deposited via a molecular layer deposition (MLD) process at 150 °C, using lithium tert-butoxide and glycerol as precursors. The as-formed LiGL coating layer is highly tunable in its thickness by simply adjusting MLD cycles and shows a good stability and outstanding ionic transport properties. The LiGL layer is found to effectively mitigate side reactions and enhance cycling stability in both symmetric cells and full cells. Specifically, the LMBs with LiGL@Li anode of 400 MLD cycles and LiNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> cathode enable a capacity retention of ≈87%, much higher than ≈35% of the cells with bare Li after 200 cycles at a charge/discharge current density of 2.1 mA cm<sup>−2</sup>. This work paves a feasible way for practical LMBs with improved capacity and stability through applying an innovative protection layer on Li metal anodes.\",\"PeriodicalId\":21841,\"journal\":{\"name\":\"Small Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sstr.202400174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂(Li)金属电池(LMB)的高能量密度优势使其越来越受到人们的青睐;然而,锂金属负极的强反应性和枝晶生长等问题限制了其实际应用。本研究在 50 μm 厚的锂金属阳极上采用了一种新型含锂甘油(LiGL)或有机硅保护层,以提高锂金属电池的性能。这种 LiGL 层是以叔丁醇锂和甘油为前驱体,通过分子层沉积(MLD)工艺在 150 °C 温度下精确沉积而成的。只需调整分子层沉积(MLD)周期,就能高度调节已形成的锂地胶层厚度,并显示出良好的稳定性和出色的离子传输特性。研究发现,无论是对称电池还是全电池,LiGL 涂层都能有效缓解副反应并提高循环稳定性。具体而言,在充放电电流密度为 2.1 mA cm-2 的条件下,使用 LiGL@Li 阳极和 LiNi0.6Mn0.2Co0.2O2 阴极的 LMB 电池在循环 400 次后,容量保持率可达 ≈87%,远高于使用裸锂电池 200 次后的容量保持率 ≈35%。这项研究通过在锂金属阳极上应用创新保护层,为提高容量和稳定性的实用 LMB 铺平了可行的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lithicone-Protected Lithium Metal Anodes for Lithium Metal Batteries with Nickel-Rich Cathode Materials

Lithicone-Protected Lithium Metal Anodes for Lithium Metal Batteries with Nickel-Rich Cathode Materials
The high energy density advantage of lithium (Li) metal batteries (LMBs) makes them increasingly desirable; however, problems such as strong reactivity and dendrite growth of Li metal anode limit their practical uses. In this work, a novel Li-containing glycerol (LiGL) or lithicone protection layer on a 50 μm thick Li metal anode is employed for improving the performance of LMBs. This LiGL layer was accurately deposited via a molecular layer deposition (MLD) process at 150 °C, using lithium tert-butoxide and glycerol as precursors. The as-formed LiGL coating layer is highly tunable in its thickness by simply adjusting MLD cycles and shows a good stability and outstanding ionic transport properties. The LiGL layer is found to effectively mitigate side reactions and enhance cycling stability in both symmetric cells and full cells. Specifically, the LMBs with LiGL@Li anode of 400 MLD cycles and LiNi0.6Mn0.2Co0.2O2 cathode enable a capacity retention of ≈87%, much higher than ≈35% of the cells with bare Li after 200 cycles at a charge/discharge current density of 2.1 mA cm−2. This work paves a feasible way for practical LMBs with improved capacity and stability through applying an innovative protection layer on Li metal anodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信