{"title":"用于测量二元液体混合物质量扩散系数的索雷特强迫瑞雷散射技术的理论与实验","authors":"Hiroaki Matsuura, Yuji Nagasaka","doi":"10.1007/s10765-024-03401-8","DOIUrl":null,"url":null,"abstract":"<div><p>Mass diffusion coefficient measurement techniques with high temporal and spatial resolution have become essential for the research and development of leading-edge technology in a wide range of cross-disciplinary fields, but cannot be achieved using conventional methods. We provide a comprehensive review of the state-of-the-art theoretical and experimental investigations on Soret forced Rayleigh scattering (SFRS), a grating excitation technique (GET) for measuring the mass diffusion coefficient of binary liquid mixtures. SFRS utilizes the Soret effect to create micrometer-order periodic spatial concentration modulation in a sample due to the absorption of an optical interference grating generated by two intersecting heating laser beams. The decay of the concentration modulation by the mass diffusion process within several milliseconds is detected by the diffraction of a probing beam. The theoretical considerations regarding deviations from the ideal mass diffusion conditions are the effects of: (1) the Gaussian beam intensity distribution, (2) the light absorbing material and (3) the cell wall. The proper settings for the optical system are also analyzed, e.g., the effect of coherency and polarization of the heating laser and the effect of the <i>z</i>-direction length of the interference region. We also consider the frame of reference, center of gravity invariance and effect of convection, which are particularly important for mass diffusion experiments. Using the correct implementation of the theory, the optimal SFRS apparatus design and its appropriate use are described in detail. Finally, two successful applications of SFRS are demonstrated using visible light laser heating and mid-wavelength infrared gas laser heating.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-024-03401-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Theory and Experiment of the Soret Forced Rayleigh Scattering Technique for Mass Diffusion Coefficient Measurement of Binary Liquid Mixtures\",\"authors\":\"Hiroaki Matsuura, Yuji Nagasaka\",\"doi\":\"10.1007/s10765-024-03401-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mass diffusion coefficient measurement techniques with high temporal and spatial resolution have become essential for the research and development of leading-edge technology in a wide range of cross-disciplinary fields, but cannot be achieved using conventional methods. We provide a comprehensive review of the state-of-the-art theoretical and experimental investigations on Soret forced Rayleigh scattering (SFRS), a grating excitation technique (GET) for measuring the mass diffusion coefficient of binary liquid mixtures. SFRS utilizes the Soret effect to create micrometer-order periodic spatial concentration modulation in a sample due to the absorption of an optical interference grating generated by two intersecting heating laser beams. The decay of the concentration modulation by the mass diffusion process within several milliseconds is detected by the diffraction of a probing beam. The theoretical considerations regarding deviations from the ideal mass diffusion conditions are the effects of: (1) the Gaussian beam intensity distribution, (2) the light absorbing material and (3) the cell wall. The proper settings for the optical system are also analyzed, e.g., the effect of coherency and polarization of the heating laser and the effect of the <i>z</i>-direction length of the interference region. We also consider the frame of reference, center of gravity invariance and effect of convection, which are particularly important for mass diffusion experiments. Using the correct implementation of the theory, the optimal SFRS apparatus design and its appropriate use are described in detail. Finally, two successful applications of SFRS are demonstrated using visible light laser heating and mid-wavelength infrared gas laser heating.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"45 8\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10765-024-03401-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03401-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03401-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Theory and Experiment of the Soret Forced Rayleigh Scattering Technique for Mass Diffusion Coefficient Measurement of Binary Liquid Mixtures
Mass diffusion coefficient measurement techniques with high temporal and spatial resolution have become essential for the research and development of leading-edge technology in a wide range of cross-disciplinary fields, but cannot be achieved using conventional methods. We provide a comprehensive review of the state-of-the-art theoretical and experimental investigations on Soret forced Rayleigh scattering (SFRS), a grating excitation technique (GET) for measuring the mass diffusion coefficient of binary liquid mixtures. SFRS utilizes the Soret effect to create micrometer-order periodic spatial concentration modulation in a sample due to the absorption of an optical interference grating generated by two intersecting heating laser beams. The decay of the concentration modulation by the mass diffusion process within several milliseconds is detected by the diffraction of a probing beam. The theoretical considerations regarding deviations from the ideal mass diffusion conditions are the effects of: (1) the Gaussian beam intensity distribution, (2) the light absorbing material and (3) the cell wall. The proper settings for the optical system are also analyzed, e.g., the effect of coherency and polarization of the heating laser and the effect of the z-direction length of the interference region. We also consider the frame of reference, center of gravity invariance and effect of convection, which are particularly important for mass diffusion experiments. Using the correct implementation of the theory, the optimal SFRS apparatus design and its appropriate use are described in detail. Finally, two successful applications of SFRS are demonstrated using visible light laser heating and mid-wavelength infrared gas laser heating.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.