p 拉普拉斯算子两相伯努利问题中的正则性

IF 2.1 2区 数学 Q1 MATHEMATICS
Masoud Bayrami, Morteza Fotouhi
{"title":"p 拉普拉斯算子两相伯努利问题中的正则性","authors":"Masoud Bayrami, Morteza Fotouhi","doi":"10.1007/s00526-024-02789-3","DOIUrl":null,"url":null,"abstract":"<p>We show that any minimizer of the well-known ACF functional (for the <i>p</i>-Laplacian) constitutes a viscosity solution. This allows us to establish a uniform flatness decay at the two-phase free boundary points to improve the flatness, which boils down to <span>\\(C^{1,\\eta }\\)</span> regularity of the flat part of the free boundary. This result, in turn, is used to prove the Lipschitz regularity of minimizers by a dichotomy argument. It is noteworthy that the analysis of branch points is also included.\n</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"37 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity in the two-phase Bernoulli problem for the p-Laplace operator\",\"authors\":\"Masoud Bayrami, Morteza Fotouhi\",\"doi\":\"10.1007/s00526-024-02789-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that any minimizer of the well-known ACF functional (for the <i>p</i>-Laplacian) constitutes a viscosity solution. This allows us to establish a uniform flatness decay at the two-phase free boundary points to improve the flatness, which boils down to <span>\\\\(C^{1,\\\\eta }\\\\)</span> regularity of the flat part of the free boundary. This result, in turn, is used to prove the Lipschitz regularity of minimizers by a dichotomy argument. It is noteworthy that the analysis of branch points is also included.\\n</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02789-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02789-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,众所周知的 ACF 函数(p-Laplacian)的任何最小值都构成了粘性解。这使得我们可以在两相自由边界点建立均匀的平坦性衰减,以提高平坦性,这归结为自由边界平坦部分的(C^{1,\eta }\ )正则性。这一结果反过来又被用来通过二分法论证最小化的 Lipschitz 正则性。值得注意的是,分支点的分析也包括在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity in the two-phase Bernoulli problem for the p-Laplace operator

We show that any minimizer of the well-known ACF functional (for the p-Laplacian) constitutes a viscosity solution. This allows us to establish a uniform flatness decay at the two-phase free boundary points to improve the flatness, which boils down to \(C^{1,\eta }\) regularity of the flat part of the free boundary. This result, in turn, is used to prove the Lipschitz regularity of minimizers by a dichotomy argument. It is noteworthy that the analysis of branch points is also included.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
4.80%
发文量
224
审稿时长
6 months
期刊介绍: Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives. This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include: - Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory - Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems - Variational problems in differential and complex geometry - Variational methods in global analysis and topology - Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems - Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions - Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信