{"title":"p 拉普拉斯算子两相伯努利问题中的正则性","authors":"Masoud Bayrami, Morteza Fotouhi","doi":"10.1007/s00526-024-02789-3","DOIUrl":null,"url":null,"abstract":"<p>We show that any minimizer of the well-known ACF functional (for the <i>p</i>-Laplacian) constitutes a viscosity solution. This allows us to establish a uniform flatness decay at the two-phase free boundary points to improve the flatness, which boils down to <span>\\(C^{1,\\eta }\\)</span> regularity of the flat part of the free boundary. This result, in turn, is used to prove the Lipschitz regularity of minimizers by a dichotomy argument. It is noteworthy that the analysis of branch points is also included.\n</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"37 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity in the two-phase Bernoulli problem for the p-Laplace operator\",\"authors\":\"Masoud Bayrami, Morteza Fotouhi\",\"doi\":\"10.1007/s00526-024-02789-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that any minimizer of the well-known ACF functional (for the <i>p</i>-Laplacian) constitutes a viscosity solution. This allows us to establish a uniform flatness decay at the two-phase free boundary points to improve the flatness, which boils down to <span>\\\\(C^{1,\\\\eta }\\\\)</span> regularity of the flat part of the free boundary. This result, in turn, is used to prove the Lipschitz regularity of minimizers by a dichotomy argument. It is noteworthy that the analysis of branch points is also included.\\n</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02789-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02789-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Regularity in the two-phase Bernoulli problem for the p-Laplace operator
We show that any minimizer of the well-known ACF functional (for the p-Laplacian) constitutes a viscosity solution. This allows us to establish a uniform flatness decay at the two-phase free boundary points to improve the flatness, which boils down to \(C^{1,\eta }\) regularity of the flat part of the free boundary. This result, in turn, is used to prove the Lipschitz regularity of minimizers by a dichotomy argument. It is noteworthy that the analysis of branch points is also included.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.