{"title":"关于具有封闭平稳切线流的利玛窦流","authors":"Pak-Yeung Chan, Zilu Ma, Yongjia Zhang","doi":"10.1007/s00526-024-02778-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider Ricci flows admitting closed and smooth tangent flows in the sense of Bamler (Structure theory of non-collapsed limits of Ricci flows, 2020. arXiv:2009.03243). The tangent flow in question can be either a tangent flow at infinity for an ancient Ricci flow, or a tangent flow at a singular point for a Ricci flow developing a finite-time singularity. Among other things, we prove: (1) that in these cases the tangent flow must be unique, (2) that if a Ricci flow with finite-time singularity has a closed singularity model, then the singularity is of Type I and the singularity model is the tangent flow at the singular point; this answers a question proposed in Chow et al. (The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects. Mathematical surveys and monographs, vol 163. AMS, Providence, 2010), (3) a dichotomy theorem that characterizes ancient Ricci flows admitting a closed and smooth backward sequential limit.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Ricci flows with closed and smooth tangent flows\",\"authors\":\"Pak-Yeung Chan, Zilu Ma, Yongjia Zhang\",\"doi\":\"10.1007/s00526-024-02778-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider Ricci flows admitting closed and smooth tangent flows in the sense of Bamler (Structure theory of non-collapsed limits of Ricci flows, 2020. arXiv:2009.03243). The tangent flow in question can be either a tangent flow at infinity for an ancient Ricci flow, or a tangent flow at a singular point for a Ricci flow developing a finite-time singularity. Among other things, we prove: (1) that in these cases the tangent flow must be unique, (2) that if a Ricci flow with finite-time singularity has a closed singularity model, then the singularity is of Type I and the singularity model is the tangent flow at the singular point; this answers a question proposed in Chow et al. (The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects. Mathematical surveys and monographs, vol 163. AMS, Providence, 2010), (3) a dichotomy theorem that characterizes ancient Ricci flows admitting a closed and smooth backward sequential limit.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02778-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02778-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑的是巴姆勒(《利玛窦流非塌缩极限的结构理论》,2020 年,arXiv:2009.03243)意义上的利玛窦流(Ricci flows admitting closed and smooth tangent flows)。对于古老的利玛窦流来说,切向流可以是无穷远处的切向流;对于发展出有限时间奇点的利玛窦流来说,切向流可以是奇点处的切向流。除其他外,我们还证明了:(1)在这些情况下,切向流必须是唯一的;(2)如果具有有限时间奇点的利玛窦流有一个封闭的奇点模型,那么奇点属于 I 型,奇点模型就是奇点处的切向流;这回答了 Chow 等人(《利玛窦流:技术与应用》(The Ricci flow: techniques and applications.第三部分。几何分析方面。Mathematical surveys and monographs, vol 163.AMS, Providence, 2010),(3) 一个二分法定理,描述了古代利玛窦流的特征,它允许一个封闭和光滑的后向序列极限。
On Ricci flows with closed and smooth tangent flows
In this paper, we consider Ricci flows admitting closed and smooth tangent flows in the sense of Bamler (Structure theory of non-collapsed limits of Ricci flows, 2020. arXiv:2009.03243). The tangent flow in question can be either a tangent flow at infinity for an ancient Ricci flow, or a tangent flow at a singular point for a Ricci flow developing a finite-time singularity. Among other things, we prove: (1) that in these cases the tangent flow must be unique, (2) that if a Ricci flow with finite-time singularity has a closed singularity model, then the singularity is of Type I and the singularity model is the tangent flow at the singular point; this answers a question proposed in Chow et al. (The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects. Mathematical surveys and monographs, vol 163. AMS, Providence, 2010), (3) a dichotomy theorem that characterizes ancient Ricci flows admitting a closed and smooth backward sequential limit.