计算一维理想和缺陷半无限周期结构中表面波的精确高效方法

IF 2.2 3区 工程技术 Q2 MECHANICS
B. W. Yan, Z. F. Tang, Q. Gao
{"title":"计算一维理想和缺陷半无限周期结构中表面波的精确高效方法","authors":"B. W. Yan,&nbsp;Z. F. Tang,&nbsp;Q. Gao","doi":"10.1007/s00419-024-02656-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an efficient and accurate method for calculating surface waves in one-dimensional ideal and defective semi-infinite periodic structures. The eigenequations for the surface waves in an ideal semi-infinite periodic structure and those eigenequations for the finite periodic structure within the bandgap are derived using the symplectic matrix. Based on these two eigenequations and the properties of the symplectic matrix, we show that the eigenfrequencies of the surface waves in an ideal semi-infinite periodic structure can be obtained using the eigenfrequencies within the bandgap of a finite periodic structure with different boundary conditions. The eigenfrequencies of the finite periodic structure can be calculated efficiently and accurately by the method combining the <span>\\(2^{N}\\)</span> algorithm and Wittrick–Williams algorithm. The proposed method is also extended to solve the surface waves in defective semi-infinite periodic structures. The accuracy and efficiency of the proposed method are demonstrated using several numerical examples.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 10","pages":"3027 - 3048"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An accurate and efficient method for calculating surface waves in one-dimensional ideal and defective semi-infinite periodic structures\",\"authors\":\"B. W. Yan,&nbsp;Z. F. Tang,&nbsp;Q. Gao\",\"doi\":\"10.1007/s00419-024-02656-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents an efficient and accurate method for calculating surface waves in one-dimensional ideal and defective semi-infinite periodic structures. The eigenequations for the surface waves in an ideal semi-infinite periodic structure and those eigenequations for the finite periodic structure within the bandgap are derived using the symplectic matrix. Based on these two eigenequations and the properties of the symplectic matrix, we show that the eigenfrequencies of the surface waves in an ideal semi-infinite periodic structure can be obtained using the eigenfrequencies within the bandgap of a finite periodic structure with different boundary conditions. The eigenfrequencies of the finite periodic structure can be calculated efficiently and accurately by the method combining the <span>\\\\(2^{N}\\\\)</span> algorithm and Wittrick–Williams algorithm. The proposed method is also extended to solve the surface waves in defective semi-infinite periodic structures. The accuracy and efficiency of the proposed method are demonstrated using several numerical examples.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"94 10\",\"pages\":\"3027 - 3048\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02656-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02656-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了计算一维理想半无限周期结构和缺陷半无限周期结构中表面波的高效而精确的方法。利用交映矩阵推导了理想半无限周期结构中表面波的自变量和带隙内有限周期结构的自变量。根据这两个特征方程和交映矩阵的性质,我们证明了理想半无限周期结构中表面波的特征频率可以通过具有不同边界条件的有限周期结构带隙内的特征频率得到。结合\(2^{N}\)算法和 Wittrick-Williams 算法的方法可以高效准确地计算有限周期结构的特征频率。所提出的方法还可扩展用于求解有缺陷的半无限周期结构中的表面波。通过几个数值例子证明了所提方法的准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An accurate and efficient method for calculating surface waves in one-dimensional ideal and defective semi-infinite periodic structures

An accurate and efficient method for calculating surface waves in one-dimensional ideal and defective semi-infinite periodic structures

This study presents an efficient and accurate method for calculating surface waves in one-dimensional ideal and defective semi-infinite periodic structures. The eigenequations for the surface waves in an ideal semi-infinite periodic structure and those eigenequations for the finite periodic structure within the bandgap are derived using the symplectic matrix. Based on these two eigenequations and the properties of the symplectic matrix, we show that the eigenfrequencies of the surface waves in an ideal semi-infinite periodic structure can be obtained using the eigenfrequencies within the bandgap of a finite periodic structure with different boundary conditions. The eigenfrequencies of the finite periodic structure can be calculated efficiently and accurately by the method combining the \(2^{N}\) algorithm and Wittrick–Williams algorithm. The proposed method is also extended to solve the surface waves in defective semi-infinite periodic structures. The accuracy and efficiency of the proposed method are demonstrated using several numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信