Yi Zhou;Zhuolin Yu;Zhaorong Ke;Shaolei Ge;Shenhu Huang;Jianpeng Wang;Tong Zhou;Yan Su
{"title":"用于 MEMS QMG 的快速电路相位误差识别和补偿方法,可将 ZRO 漂移降低 99.7","authors":"Yi Zhou;Zhuolin Yu;Zhaorong Ke;Shaolei Ge;Shenhu Huang;Jianpeng Wang;Tong Zhou;Yan Su","doi":"10.1109/JMEMS.2024.3424810","DOIUrl":null,"url":null,"abstract":"To solve the problem of circuit phase error induced quadrature error coupling into the rate output of the gyroscope operating in force-to-rebalance (FRB) mode, a rapid circuit phase error identification and compensation method is proposed in this paper. Firstly, the main sources of phase error in control circuit and the influence of phase error on drive mode and sense mode of micro-electro-mechanical system (MEMS) quad mass gyroscope (QMG) are theoretically analyzed. Then, a rapid circuit phase error identification and compensation method utilizing Recursive Least Squares (RLS) algorithm is proposed, achieving identification time under 1 s and 99.7% reduction in zero-rate output (ZRO) drift. This method leverages the disparity between the magnitudes of quadrature error and damping coupling error during the rapid temperature rise of the gyroscope after startup. The output of closed-loop quadrature suppression and FRB loop is used as the input of the RLS algorithm. The algorithm is carefully engineered to ascertain the phase error within 1s, thereby facilitating the expeditious rectification of the control circuit’s phase error. The effectiveness of the proposed method is verified through rotation experiments, with an identification error of less than 0.2%. The experimental results show that when using this method, the bias instability (BI) of the gyroscope is reduced from 2.218 °/h to 0.165 °/h, a total reduction of 13.4 times, while the ARW remains unchanged.","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"646-655"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rapid Circuit Phase Error Identification and Compensation Method for MEMS QMG Achieving 99.7% Reduction in ZRO Drift\",\"authors\":\"Yi Zhou;Zhuolin Yu;Zhaorong Ke;Shaolei Ge;Shenhu Huang;Jianpeng Wang;Tong Zhou;Yan Su\",\"doi\":\"10.1109/JMEMS.2024.3424810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of circuit phase error induced quadrature error coupling into the rate output of the gyroscope operating in force-to-rebalance (FRB) mode, a rapid circuit phase error identification and compensation method is proposed in this paper. Firstly, the main sources of phase error in control circuit and the influence of phase error on drive mode and sense mode of micro-electro-mechanical system (MEMS) quad mass gyroscope (QMG) are theoretically analyzed. Then, a rapid circuit phase error identification and compensation method utilizing Recursive Least Squares (RLS) algorithm is proposed, achieving identification time under 1 s and 99.7% reduction in zero-rate output (ZRO) drift. This method leverages the disparity between the magnitudes of quadrature error and damping coupling error during the rapid temperature rise of the gyroscope after startup. The output of closed-loop quadrature suppression and FRB loop is used as the input of the RLS algorithm. The algorithm is carefully engineered to ascertain the phase error within 1s, thereby facilitating the expeditious rectification of the control circuit’s phase error. The effectiveness of the proposed method is verified through rotation experiments, with an identification error of less than 0.2%. The experimental results show that when using this method, the bias instability (BI) of the gyroscope is reduced from 2.218 °/h to 0.165 °/h, a total reduction of 13.4 times, while the ARW remains unchanged.\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 5\",\"pages\":\"646-655\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10599545/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10599545/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Rapid Circuit Phase Error Identification and Compensation Method for MEMS QMG Achieving 99.7% Reduction in ZRO Drift
To solve the problem of circuit phase error induced quadrature error coupling into the rate output of the gyroscope operating in force-to-rebalance (FRB) mode, a rapid circuit phase error identification and compensation method is proposed in this paper. Firstly, the main sources of phase error in control circuit and the influence of phase error on drive mode and sense mode of micro-electro-mechanical system (MEMS) quad mass gyroscope (QMG) are theoretically analyzed. Then, a rapid circuit phase error identification and compensation method utilizing Recursive Least Squares (RLS) algorithm is proposed, achieving identification time under 1 s and 99.7% reduction in zero-rate output (ZRO) drift. This method leverages the disparity between the magnitudes of quadrature error and damping coupling error during the rapid temperature rise of the gyroscope after startup. The output of closed-loop quadrature suppression and FRB loop is used as the input of the RLS algorithm. The algorithm is carefully engineered to ascertain the phase error within 1s, thereby facilitating the expeditious rectification of the control circuit’s phase error. The effectiveness of the proposed method is verified through rotation experiments, with an identification error of less than 0.2%. The experimental results show that when using this method, the bias instability (BI) of the gyroscope is reduced from 2.218 °/h to 0.165 °/h, a total reduction of 13.4 times, while the ARW remains unchanged.
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.