自旋^c^共轭中的乘积

Hassan Abdallah, Andrew Salch
{"title":"自旋^c^共轭中的乘积","authors":"Hassan Abdallah, Andrew Salch","doi":"arxiv-2407.10045","DOIUrl":null,"url":null,"abstract":"We calculate the mod $2$ spin$^c$-cobordism ring up to uniform\n$F$-isomorphism (i.e., inseparable isogeny). As a consequence we get the prime\nideal spectrum of the mod $2$ spin$^c$-cobordism ring. We also calculate the\nmod $2$ spin$^c$-cobordism ring ``on the nose'' in degrees $\\leq 33$. We\nconstruct an infinitely generated nonunital subring of the $2$-torsion in the\nspin$^c$-cobordism ring. We use our calculations of product structure in the\nspin and spin$^c$ cobordism rings to give an explicit example, up to cobordism,\nof a compact $24$-dimensional spin manifold which is not cobordant to a sum of\nsquares, which was asked about in a 1965 question of Milnor.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Products in spin$^c$-cobordism\",\"authors\":\"Hassan Abdallah, Andrew Salch\",\"doi\":\"arxiv-2407.10045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We calculate the mod $2$ spin$^c$-cobordism ring up to uniform\\n$F$-isomorphism (i.e., inseparable isogeny). As a consequence we get the prime\\nideal spectrum of the mod $2$ spin$^c$-cobordism ring. We also calculate the\\nmod $2$ spin$^c$-cobordism ring ``on the nose'' in degrees $\\\\leq 33$. We\\nconstruct an infinitely generated nonunital subring of the $2$-torsion in the\\nspin$^c$-cobordism ring. We use our calculations of product structure in the\\nspin and spin$^c$ cobordism rings to give an explicit example, up to cobordism,\\nof a compact $24$-dimensional spin manifold which is not cobordant to a sum of\\nsquares, which was asked about in a 1965 question of Milnor.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了模 2$ 自旋$^c$-同调环的均匀$F$-同构(即不可分割的同源性)。因此,我们得到了 mod $2$ 自旋$^c$-同调环的质谱。我们还计算了度数为 $\leq 33$ 的 mod $2$ 自旋$^c$-共轭环的 "鼻子上"。我们在自旋$^c$-共轭环中构建了一个无限生成的 2$-扭转的非空心子环。我们利用对自旋和自旋^c$共弦环中乘积结构的计算,给出了一个紧凑的$24$维自旋流形不与平方和共弦的明确例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Products in spin$^c$-cobordism
We calculate the mod $2$ spin$^c$-cobordism ring up to uniform $F$-isomorphism (i.e., inseparable isogeny). As a consequence we get the prime ideal spectrum of the mod $2$ spin$^c$-cobordism ring. We also calculate the mod $2$ spin$^c$-cobordism ring ``on the nose'' in degrees $\leq 33$. We construct an infinitely generated nonunital subring of the $2$-torsion in the spin$^c$-cobordism ring. We use our calculations of product structure in the spin and spin$^c$ cobordism rings to give an explicit example, up to cobordism, of a compact $24$-dimensional spin manifold which is not cobordant to a sum of squares, which was asked about in a 1965 question of Milnor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信