多物种 Sherrington-Kirkpatrick 模型的 Thouless-Anderson-Palmer 公式

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Qiang Wu
{"title":"多物种 Sherrington-Kirkpatrick 模型的 Thouless-Anderson-Palmer 公式","authors":"Qiang Wu","doi":"10.1007/s10955-024-03288-7","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the Thouless–Anderson–Palmer (TAP) equations for the local magnetization in the multi-species Sherrington–Kirkpatrick (MSK) spin glass model. One of the key ingredients is based on concentration results established in Dey and Wu (J Stat Phys 185(3):22, 2021). The equations hold at high temperature for general MSK model without <i>positive semi-definite</i> assumption on the variance profile matrix <span>\\(\\mathbf {\\Delta }^2\\)</span>.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 7","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thouless–Anderson–Palmer Equations for the Multi-species Sherrington–Kirkpatrick Model\",\"authors\":\"Qiang Wu\",\"doi\":\"10.1007/s10955-024-03288-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove the Thouless–Anderson–Palmer (TAP) equations for the local magnetization in the multi-species Sherrington–Kirkpatrick (MSK) spin glass model. One of the key ingredients is based on concentration results established in Dey and Wu (J Stat Phys 185(3):22, 2021). The equations hold at high temperature for general MSK model without <i>positive semi-definite</i> assumption on the variance profile matrix <span>\\\\(\\\\mathbf {\\\\Delta }^2\\\\)</span>.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"191 7\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-024-03288-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03288-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了多物种 Sherrington-Kirkpatrick (MSK) 自旋玻璃模型中局部磁化的 Thouless-Anderson-Palmer (TAP) 方程。其中一个关键要素是基于 Dey 和 Wu(J Stat Phys 185(3):22, 2021)建立的浓度结果。对于一般的 MSK 模型,这些方程在高温下是成立的,不需要对方差轮廓矩阵(\mathbf {\Delta }^2\)进行正半有限假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thouless–Anderson–Palmer Equations for the Multi-species Sherrington–Kirkpatrick Model

We prove the Thouless–Anderson–Palmer (TAP) equations for the local magnetization in the multi-species Sherrington–Kirkpatrick (MSK) spin glass model. One of the key ingredients is based on concentration results established in Dey and Wu (J Stat Phys 185(3):22, 2021). The equations hold at high temperature for general MSK model without positive semi-definite assumption on the variance profile matrix \(\mathbf {\Delta }^2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信