针对具有弱线性阻尼项的非线性薛定谔方程的共形结构保留 SVM 方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xin Li , Luming Zhang
{"title":"针对具有弱线性阻尼项的非线性薛定谔方程的共形结构保留 SVM 方法","authors":"Xin Li ,&nbsp;Luming Zhang","doi":"10.1016/j.apnum.2024.06.024","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, by applying the supplementary variable method (SVM), some high-order, conformal structure-preserving, linearized algorithms are developed for the damped nonlinear Schrödinger equation. We derive the well-determined SVM systems with the conformal properties and they are then equivalent to nonlinear equality constrained optimization problems for computation. The deduced optimization models are discretized by using the Gauss type Runge-Kutta method and the prediction-correction technique in time as well as the Fourier pseudo-spectral method in space. Numerical results and some comparisons between this method and other reported methods are given to favor the suggested method in the overall performance. It is worthwhile to emphasize that the numerical strategy in this work could be extended to other conservative or dissipative system for designing high-order structure-preserving algorithms.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal structure-preserving SVM methods for the nonlinear Schrödinger equation with weakly linear damping term\",\"authors\":\"Xin Li ,&nbsp;Luming Zhang\",\"doi\":\"10.1016/j.apnum.2024.06.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, by applying the supplementary variable method (SVM), some high-order, conformal structure-preserving, linearized algorithms are developed for the damped nonlinear Schrödinger equation. We derive the well-determined SVM systems with the conformal properties and they are then equivalent to nonlinear equality constrained optimization problems for computation. The deduced optimization models are discretized by using the Gauss type Runge-Kutta method and the prediction-correction technique in time as well as the Fourier pseudo-spectral method in space. Numerical results and some comparisons between this method and other reported methods are given to favor the suggested method in the overall performance. It is worthwhile to emphasize that the numerical strategy in this work could be extended to other conservative or dissipative system for designing high-order structure-preserving algorithms.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过应用补充变量法(SVM),为阻尼非线性薛定谔方程开发了一些高阶、保共形结构的线性化算法。我们推导出了具有保角特性的完备 SVM 系统,并将其等价为用于计算的非线性相等约束优化问题。推导出的优化模型在时间上使用高斯型 Runge-Kutta 方法和预测校正技术,在空间上使用傅里叶伪谱方法进行离散化。研究给出了数值结果,并将该方法与其他已报道的方法进行了比较,结果表明建议的方法在整体性能上更胜一筹。值得强调的是,这项工作中的数值策略可以扩展到其他保守或耗散系统,用于设计高阶结构保持算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal structure-preserving SVM methods for the nonlinear Schrödinger equation with weakly linear damping term

In this paper, by applying the supplementary variable method (SVM), some high-order, conformal structure-preserving, linearized algorithms are developed for the damped nonlinear Schrödinger equation. We derive the well-determined SVM systems with the conformal properties and they are then equivalent to nonlinear equality constrained optimization problems for computation. The deduced optimization models are discretized by using the Gauss type Runge-Kutta method and the prediction-correction technique in time as well as the Fourier pseudo-spectral method in space. Numerical results and some comparisons between this method and other reported methods are given to favor the suggested method in the overall performance. It is worthwhile to emphasize that the numerical strategy in this work could be extended to other conservative or dissipative system for designing high-order structure-preserving algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信