{"title":"迪克斯米尔平均定理的加强版及其一些应用","authors":"Shilin Wen , Junsheng Fang , Zhaolin Yao","doi":"10.1016/j.jfa.2024.110569","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>M</mi></math></span> be a type <span><math><mi>I</mi><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor and let <em>τ</em> be the faithful normal tracial state on <span><math><mi>M</mi></math></span>. In this paper, we prove that given finite elements <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>M</mi></math></span>, there is a finite decomposition of the identity into integer <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span> mutually orthogonal nonzero projections <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>M</mi></math></span>, <span><math><mi>I</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, such that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mi>τ</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for all <span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>N</mi></math></span> and <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi></math></span>. Equivalently, there is a unitary operator <span><math><mi>U</mi><mo>∈</mo><mi>M</mi></math></span> such that <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>N</mi></mrow></mfrac><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msup><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow><mrow><mi>j</mi></mrow></msup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>U</mi></mrow><mrow><mi>j</mi></mrow></msup><mo>=</mo><mi>τ</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mi>I</mi></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi></math></span>. This result is a stronger version of Dixmier's averaging theorem for type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factors. As the first application, we show that all elements of trace zero in a type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor are single commutators and any self-adjoint elements of trace zero are single self-commutators. This result answers affirmatively Question 1.1 in <span><span>[6]</span></span>. As the second application, we prove that any self-adjoint element in a type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor can be written a linear combination of 4 projections. This result answers affirmatively Question 6(2) in <span><span>[12]</span></span>. As the third application, we show that if <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span> is a finite factor, <span><math><mi>X</mi><mo>∈</mo><mi>M</mi></math></span>, then there exists a normal operator <span><math><mi>N</mi><mo>∈</mo><mi>M</mi></math></span> and a nilpotent operator <em>K</em> such that <span><math><mi>X</mi><mo>=</mo><mi>N</mi><mo>+</mo><mi>K</mi></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stronger version of Dixmier's averaging theorem and some applications\",\"authors\":\"Shilin Wen , Junsheng Fang , Zhaolin Yao\",\"doi\":\"10.1016/j.jfa.2024.110569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>M</mi></math></span> be a type <span><math><mi>I</mi><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor and let <em>τ</em> be the faithful normal tracial state on <span><math><mi>M</mi></math></span>. In this paper, we prove that given finite elements <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>M</mi></math></span>, there is a finite decomposition of the identity into integer <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span> mutually orthogonal nonzero projections <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>M</mi></math></span>, <span><math><mi>I</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, such that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mi>τ</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for all <span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>N</mi></math></span> and <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi></math></span>. Equivalently, there is a unitary operator <span><math><mi>U</mi><mo>∈</mo><mi>M</mi></math></span> such that <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>N</mi></mrow></mfrac><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msup><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow><mrow><mi>j</mi></mrow></msup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>U</mi></mrow><mrow><mi>j</mi></mrow></msup><mo>=</mo><mi>τ</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mi>I</mi></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi></math></span>. This result is a stronger version of Dixmier's averaging theorem for type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factors. As the first application, we show that all elements of trace zero in a type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor are single commutators and any self-adjoint elements of trace zero are single self-commutators. This result answers affirmatively Question 1.1 in <span><span>[6]</span></span>. As the second application, we prove that any self-adjoint element in a type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor can be written a linear combination of 4 projections. This result answers affirmatively Question 6(2) in <span><span>[12]</span></span>. As the third application, we show that if <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span> is a finite factor, <span><math><mi>X</mi><mo>∈</mo><mi>M</mi></math></span>, then there exists a normal operator <span><math><mi>N</mi><mo>∈</mo><mi>M</mi></math></span> and a nilpotent operator <em>K</em> such that <span><math><mi>X</mi><mo>=</mo><mi>N</mi><mo>+</mo><mi>K</mi></math></span>.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362400257X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400257X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A stronger version of Dixmier's averaging theorem and some applications
Let be a type factor and let τ be the faithful normal tracial state on . In this paper, we prove that given finite elements , there is a finite decomposition of the identity into integer mutually orthogonal nonzero projections , , such that for all and . Equivalently, there is a unitary operator such that for . This result is a stronger version of Dixmier's averaging theorem for type factors. As the first application, we show that all elements of trace zero in a type factor are single commutators and any self-adjoint elements of trace zero are single self-commutators. This result answers affirmatively Question 1.1 in [6]. As the second application, we prove that any self-adjoint element in a type factor can be written a linear combination of 4 projections. This result answers affirmatively Question 6(2) in [12]. As the third application, we show that if is a finite factor, , then there exists a normal operator and a nilpotent operator K such that .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis