迪克斯米尔平均定理的加强版及其一些应用

IF 1.7 2区 数学 Q1 MATHEMATICS
Shilin Wen , Junsheng Fang , Zhaolin Yao
{"title":"迪克斯米尔平均定理的加强版及其一些应用","authors":"Shilin Wen ,&nbsp;Junsheng Fang ,&nbsp;Zhaolin Yao","doi":"10.1016/j.jfa.2024.110569","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>M</mi></math></span> be a type <span><math><mi>I</mi><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor and let <em>τ</em> be the faithful normal tracial state on <span><math><mi>M</mi></math></span>. In this paper, we prove that given finite elements <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>M</mi></math></span>, there is a finite decomposition of the identity into integer <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span> mutually orthogonal nonzero projections <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>M</mi></math></span>, <span><math><mi>I</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, such that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mi>τ</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for all <span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>N</mi></math></span> and <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi></math></span>. Equivalently, there is a unitary operator <span><math><mi>U</mi><mo>∈</mo><mi>M</mi></math></span> such that <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>N</mi></mrow></mfrac><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msup><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow><mrow><mi>j</mi></mrow></msup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>U</mi></mrow><mrow><mi>j</mi></mrow></msup><mo>=</mo><mi>τ</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mi>I</mi></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi></math></span>. This result is a stronger version of Dixmier's averaging theorem for type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factors. As the first application, we show that all elements of trace zero in a type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor are single commutators and any self-adjoint elements of trace zero are single self-commutators. This result answers affirmatively Question 1.1 in <span><span>[6]</span></span>. As the second application, we prove that any self-adjoint element in a type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor can be written a linear combination of 4 projections. This result answers affirmatively Question 6(2) in <span><span>[12]</span></span>. As the third application, we show that if <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span> is a finite factor, <span><math><mi>X</mi><mo>∈</mo><mi>M</mi></math></span>, then there exists a normal operator <span><math><mi>N</mi><mo>∈</mo><mi>M</mi></math></span> and a nilpotent operator <em>K</em> such that <span><math><mi>X</mi><mo>=</mo><mi>N</mi><mo>+</mo><mi>K</mi></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stronger version of Dixmier's averaging theorem and some applications\",\"authors\":\"Shilin Wen ,&nbsp;Junsheng Fang ,&nbsp;Zhaolin Yao\",\"doi\":\"10.1016/j.jfa.2024.110569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>M</mi></math></span> be a type <span><math><mi>I</mi><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor and let <em>τ</em> be the faithful normal tracial state on <span><math><mi>M</mi></math></span>. In this paper, we prove that given finite elements <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>M</mi></math></span>, there is a finite decomposition of the identity into integer <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span> mutually orthogonal nonzero projections <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>M</mi></math></span>, <span><math><mi>I</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, such that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mi>τ</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for all <span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>N</mi></math></span> and <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi></math></span>. Equivalently, there is a unitary operator <span><math><mi>U</mi><mo>∈</mo><mi>M</mi></math></span> such that <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>N</mi></mrow></mfrac><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msup><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow><mrow><mi>j</mi></mrow></msup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>U</mi></mrow><mrow><mi>j</mi></mrow></msup><mo>=</mo><mi>τ</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mi>I</mi></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi></math></span>. This result is a stronger version of Dixmier's averaging theorem for type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factors. As the first application, we show that all elements of trace zero in a type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor are single commutators and any self-adjoint elements of trace zero are single self-commutators. This result answers affirmatively Question 1.1 in <span><span>[6]</span></span>. As the second application, we prove that any self-adjoint element in a type <span><math><msub><mrow><mi>II</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor can be written a linear combination of 4 projections. This result answers affirmatively Question 6(2) in <span><span>[12]</span></span>. As the third application, we show that if <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span> is a finite factor, <span><math><mi>X</mi><mo>∈</mo><mi>M</mi></math></span>, then there exists a normal operator <span><math><mi>N</mi><mo>∈</mo><mi>M</mi></math></span> and a nilpotent operator <em>K</em> such that <span><math><mi>X</mi><mo>=</mo><mi>N</mi><mo>+</mo><mi>K</mi></math></span>.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362400257X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400257X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 M 是一个 II1 型因子,设 τ 是 M 上的忠实正三角形态。在本文中,我们证明了给定有限元素 X1,⋯,Xn∈M,对于所有 j=1,⋯,N,i=1,⋯,n,存在一个将标识分解为整数 N∈N 相互正交的非零投影 Ej∈M 的有限分解,I=∑j=1NEj,使得 EjXiEj=τ(Xi)Ej 适用于所有 j=1,⋯,N,i=1,⋯,n。等价地,对于 i=1,⋯,n,存在一个单元算子 U∈M ,使得 1N∑j=0N-1U⁎jXiUj=τ(Xi)I 。这一结果是迪克斯米尔关于 II1 型因子的平均定理的加强版。作为第一个应用,我们证明了 II1 型因子中所有迹为零的元素都是单换向器,而任何迹为零的自交元素都是单自换向器。这一结果肯定地回答了 [6] 中的问题 1.1。作为第二个应用,我们证明了 II1 型因子中的任何自交点元素都可以写成 4 个投影的线性组合。这一结果肯定地回答了 [12] 中的问题 6(2)。第三个应用,我们证明了如果(M,τ)是一个有限因子,X∈M,那么存在一个常算子 N∈M 和一个零势算子 K,使得 X=N+K.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stronger version of Dixmier's averaging theorem and some applications

Let M be a type II1 factor and let τ be the faithful normal tracial state on M. In this paper, we prove that given finite elements X1,,XnM, there is a finite decomposition of the identity into integer NN mutually orthogonal nonzero projections EjM, I=j=1NEj, such that EjXiEj=τ(Xi)Ej for all j=1,,N and i=1,,n. Equivalently, there is a unitary operator UM such that 1Nj=0N1UjXiUj=τ(Xi)I for i=1,,n. This result is a stronger version of Dixmier's averaging theorem for type II1 factors. As the first application, we show that all elements of trace zero in a type II1 factor are single commutators and any self-adjoint elements of trace zero are single self-commutators. This result answers affirmatively Question 1.1 in [6]. As the second application, we prove that any self-adjoint element in a type II1 factor can be written a linear combination of 4 projections. This result answers affirmatively Question 6(2) in [12]. As the third application, we show that if (M,τ) is a finite factor, XM, then there exists a normal operator NM and a nilpotent operator K such that X=N+K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信