使用不同方法测量积雪密度的比较

IF 6.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Hang Su , Xin-Yue Zhong , Bin Cao , Yuan-Tao Hu , Lei Zheng , Tingjun Zhang
{"title":"使用不同方法测量积雪密度的比较","authors":"Hang Su ,&nbsp;Xin-Yue Zhong ,&nbsp;Bin Cao ,&nbsp;Yuan-Tao Hu ,&nbsp;Lei Zheng ,&nbsp;Tingjun Zhang","doi":"10.1016/j.accre.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>Snow density is one of the basic properties used to describe snow cover characteristics, and it is critical for remote sensing retrieval, water resources assessment and modeling inputs. There are many instruments available to measure snow density <em>in situ</em>. However, there are measurement errors of snow density for bulk and layers or gravimetric and electronic instruments, which may affect the accuracy of remote sensing retrieval and model simulation. Especially in China, due to the noticeable heterogeneity of snowpacks, it is necessary to evaluate in detail the performance and applicability of snow density instruments in different snowpack conditions. This study evaluated the performance of different snow density instruments: the Federal Sampler, the model VS–43 snow density cylinder (VS–43), the wedge snow density cutter (WC1000 and WC250), and the Snow Fork. The average bulk snow density of all instrument measurements was set as the reference value for evaluation. The results showed that as compared with the reference, the VS–43 cylinder presented the best performance for bulk snow density measurement in the measured range with the lowest RMSE (11 kg m<sup>−3</sup>), BIAS (3 kg m<sup>−3</sup>), and MRE (1.6%). For layer observation, bulk snow density was overestimated by 8.1% with WC1000 and underestimated by 11.4% with Snow Fork which was the worst performance compared with the reference value, and there were greater measurement errors of snow density in the depth hoar than other snow layers. Compared with grassland, the uncertainty of snow density measurements was slightly lower in forests. Overall, the Federal Sampler and VS–43 cylinder are more suitable for bulk snow density measurement in deep snowpack regions across China, and it is recommended to use WC1000, WC250 and Snow Fork to measure the snow density of snow layers in the snow stratigraphy.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 4","pages":"Pages 658-668"},"PeriodicalIF":6.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824001059/pdfft?md5=a0854ea767ae2730e730177c84936b5c&pid=1-s2.0-S1674927824001059-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparison of bulk snow density measurements using different methods\",\"authors\":\"Hang Su ,&nbsp;Xin-Yue Zhong ,&nbsp;Bin Cao ,&nbsp;Yuan-Tao Hu ,&nbsp;Lei Zheng ,&nbsp;Tingjun Zhang\",\"doi\":\"10.1016/j.accre.2024.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Snow density is one of the basic properties used to describe snow cover characteristics, and it is critical for remote sensing retrieval, water resources assessment and modeling inputs. There are many instruments available to measure snow density <em>in situ</em>. However, there are measurement errors of snow density for bulk and layers or gravimetric and electronic instruments, which may affect the accuracy of remote sensing retrieval and model simulation. Especially in China, due to the noticeable heterogeneity of snowpacks, it is necessary to evaluate in detail the performance and applicability of snow density instruments in different snowpack conditions. This study evaluated the performance of different snow density instruments: the Federal Sampler, the model VS–43 snow density cylinder (VS–43), the wedge snow density cutter (WC1000 and WC250), and the Snow Fork. The average bulk snow density of all instrument measurements was set as the reference value for evaluation. The results showed that as compared with the reference, the VS–43 cylinder presented the best performance for bulk snow density measurement in the measured range with the lowest RMSE (11 kg m<sup>−3</sup>), BIAS (3 kg m<sup>−3</sup>), and MRE (1.6%). For layer observation, bulk snow density was overestimated by 8.1% with WC1000 and underestimated by 11.4% with Snow Fork which was the worst performance compared with the reference value, and there were greater measurement errors of snow density in the depth hoar than other snow layers. Compared with grassland, the uncertainty of snow density measurements was slightly lower in forests. Overall, the Federal Sampler and VS–43 cylinder are more suitable for bulk snow density measurement in deep snowpack regions across China, and it is recommended to use WC1000, WC250 and Snow Fork to measure the snow density of snow layers in the snow stratigraphy.</p></div>\",\"PeriodicalId\":48628,\"journal\":{\"name\":\"Advances in Climate Change Research\",\"volume\":\"15 4\",\"pages\":\"Pages 658-668\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674927824001059/pdfft?md5=a0854ea767ae2730e730177c84936b5c&pid=1-s2.0-S1674927824001059-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Climate Change Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674927824001059\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824001059","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

雪密度是用于描述雪盖特征的基本属性之一,对于遥感检索、水资源评估和建模输入至关重要。有许多仪器可用于现场测量雪密度。然而,雪密度存在块状和层状测量误差,或重力测量误差和电子仪器测量误差,这可能会影响遥感检索和模型模拟的准确性。特别是在中国,由于雪层具有明显的异质性,有必要详细评估雪密度仪器在不同雪层条件下的性能和适用性。本研究评估了不同雪密度仪器的性能:联邦采样器、VS-43 型雪密度筒(VS-43)、楔形雪密度切割器(WC1000 和 WC250)以及雪叉。所有仪器测量的平均积雪密度被设定为评估的参考值。结果表明,与参考值相比,VS-43 气缸在测量范围内的积雪密度测量性能最佳,有效误差(RMSE)(11 kg m-3)、误差率(BIAS)(3 kg m-3)和误差率(MRE)(1.6%)最低。在雪层观测方面,与参考值相比,WC1000 高估了 8.1%的积雪密度,Snow Fork 低估了 11.4%的积雪密度,表现最差。与草地相比,森林中雪密度测量的不确定性略低。总体而言,联邦采样器和 VS-43 气缸更适合在中国各地的深厚积雪区测量积雪密度,建议使用 WC1000、WC250 和 Snow Fork 测量雪层中的积雪密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of bulk snow density measurements using different methods

Snow density is one of the basic properties used to describe snow cover characteristics, and it is critical for remote sensing retrieval, water resources assessment and modeling inputs. There are many instruments available to measure snow density in situ. However, there are measurement errors of snow density for bulk and layers or gravimetric and electronic instruments, which may affect the accuracy of remote sensing retrieval and model simulation. Especially in China, due to the noticeable heterogeneity of snowpacks, it is necessary to evaluate in detail the performance and applicability of snow density instruments in different snowpack conditions. This study evaluated the performance of different snow density instruments: the Federal Sampler, the model VS–43 snow density cylinder (VS–43), the wedge snow density cutter (WC1000 and WC250), and the Snow Fork. The average bulk snow density of all instrument measurements was set as the reference value for evaluation. The results showed that as compared with the reference, the VS–43 cylinder presented the best performance for bulk snow density measurement in the measured range with the lowest RMSE (11 kg m−3), BIAS (3 kg m−3), and MRE (1.6%). For layer observation, bulk snow density was overestimated by 8.1% with WC1000 and underestimated by 11.4% with Snow Fork which was the worst performance compared with the reference value, and there were greater measurement errors of snow density in the depth hoar than other snow layers. Compared with grassland, the uncertainty of snow density measurements was slightly lower in forests. Overall, the Federal Sampler and VS–43 cylinder are more suitable for bulk snow density measurement in deep snowpack regions across China, and it is recommended to use WC1000, WC250 and Snow Fork to measure the snow density of snow layers in the snow stratigraphy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Climate Change Research
Advances in Climate Change Research Earth and Planetary Sciences-Atmospheric Science
CiteScore
9.80
自引率
4.10%
发文量
424
审稿时长
107 days
期刊介绍: Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change. Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信