通过路径边际似然阈值进行模型选择

Pub Date : 2024-07-11 DOI:10.1016/j.spl.2024.110214
Claudia Di Caterina , Davide Ferrari
{"title":"通过路径边际似然阈值进行模型选择","authors":"Claudia Di Caterina ,&nbsp;Davide Ferrari","doi":"10.1016/j.spl.2024.110214","DOIUrl":null,"url":null,"abstract":"<div><p>We suggest to estimate a sparse parameter vector in multivariate models through the selection of marginal likelihoods from a potentially large set. The resulting estimator involves an adaptive thresholding mechanism, whereby the marginal estimates are set to zero according to their sequential contribution to the joint information computed along a path of increasingly complex models. The effectiveness of our proposal is illustrated via simulations.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model selection by pathwise marginal likelihood thresholding\",\"authors\":\"Claudia Di Caterina ,&nbsp;Davide Ferrari\",\"doi\":\"10.1016/j.spl.2024.110214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We suggest to estimate a sparse parameter vector in multivariate models through the selection of marginal likelihoods from a potentially large set. The resulting estimator involves an adaptive thresholding mechanism, whereby the marginal estimates are set to zero according to their sequential contribution to the joint information computed along a path of increasingly complex models. The effectiveness of our proposal is illustrated via simulations.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建议通过从一个潜在的大集合中选择边际似然值来估计多元模型中的稀疏参数向量。由此产生的估计器涉及一种自适应阈值机制,根据边际估计值对沿着日益复杂的模型路径计算出的联合信息的顺序贡献,将边际估计值设为零。我们将通过模拟来说明我们建议的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Model selection by pathwise marginal likelihood thresholding

We suggest to estimate a sparse parameter vector in multivariate models through the selection of marginal likelihoods from a potentially large set. The resulting estimator involves an adaptive thresholding mechanism, whereby the marginal estimates are set to zero according to their sequential contribution to the joint information computed along a path of increasingly complex models. The effectiveness of our proposal is illustrated via simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信