利用莫尔-库仑准则分析沥青混合料的永久变形

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Daniel Beserra Costa, Osires de Medeiros Melo Neto, Milena Cristina Rocha de Souza, John Kennedy Guedes Rodrigues, Fabiano Pereira Cavalcante
{"title":"利用莫尔-库仑准则分析沥青混合料的永久变形","authors":"Daniel Beserra Costa,&nbsp;Osires de Medeiros Melo Neto,&nbsp;Milena Cristina Rocha de Souza,&nbsp;John Kennedy Guedes Rodrigues,&nbsp;Fabiano Pereira Cavalcante","doi":"10.1617/s11527-024-02423-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to investigate the influence of the internal friction angle on the mechanical properties and resistance to permanent deformation of asphalt mixtures. Permanent deformation, resulting from vehicular loads, can occur due to densification, use, and flow of the mixture. Considering that the asphalt mixture behaves as a solid material at service temperatures of 40 °C to 60 °C, the Mohr–Coulomb criterion, commonly used to describe shear characteristics of solid materials, was employed to determine the internal friction angle and cohesive intercept of the mixture. An experimental program was devised to assess the mechanical properties associated with the internal friction angle of asphalt mixtures with asphalt binders of the types Petroleum Asphalt Cement with a penetration grade of 50/70 (PAC 50/70) and Petroleum Asphalt Cement modified with styrene–butadiene–styrene (SBS) polymer (E-55/75). Laboratory analyses were conducted to determine shear rupture parameters, using the Mohr–Coulomb theory. It was observed that an increase of 5% in coarse particles resulted in an average gain of 1° in the internal friction angle for each studied gradation range, up to the limit of 30–35% of coarse particles for each mixture. The results indicated that shear rupture parameters, especially the internal friction angle and cohesive intercept, play a crucial role in the resistance to permanent deformation of asphalt mixtures. It was concluded that an increase in the internal friction angle contributes to greater resistance to permanent deformation, providing valuable insights for optimizing the composition of asphalt mixtures in terms of mechanical performance.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of permanent deformation in asphalt mixtures using Mohr–Coulomb criteria\",\"authors\":\"Daniel Beserra Costa,&nbsp;Osires de Medeiros Melo Neto,&nbsp;Milena Cristina Rocha de Souza,&nbsp;John Kennedy Guedes Rodrigues,&nbsp;Fabiano Pereira Cavalcante\",\"doi\":\"10.1617/s11527-024-02423-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to investigate the influence of the internal friction angle on the mechanical properties and resistance to permanent deformation of asphalt mixtures. Permanent deformation, resulting from vehicular loads, can occur due to densification, use, and flow of the mixture. Considering that the asphalt mixture behaves as a solid material at service temperatures of 40 °C to 60 °C, the Mohr–Coulomb criterion, commonly used to describe shear characteristics of solid materials, was employed to determine the internal friction angle and cohesive intercept of the mixture. An experimental program was devised to assess the mechanical properties associated with the internal friction angle of asphalt mixtures with asphalt binders of the types Petroleum Asphalt Cement with a penetration grade of 50/70 (PAC 50/70) and Petroleum Asphalt Cement modified with styrene–butadiene–styrene (SBS) polymer (E-55/75). Laboratory analyses were conducted to determine shear rupture parameters, using the Mohr–Coulomb theory. It was observed that an increase of 5% in coarse particles resulted in an average gain of 1° in the internal friction angle for each studied gradation range, up to the limit of 30–35% of coarse particles for each mixture. The results indicated that shear rupture parameters, especially the internal friction angle and cohesive intercept, play a crucial role in the resistance to permanent deformation of asphalt mixtures. It was concluded that an increase in the internal friction angle contributes to greater resistance to permanent deformation, providing valuable insights for optimizing the composition of asphalt mixtures in terms of mechanical performance.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"57 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-024-02423-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02423-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨内摩擦角对沥青混合料机械性能和抗永久变形能力的影响。沥青混合料在车辆荷载作用下产生的永久变形可能会因混合料的致密化、使用和流动而发生。考虑到沥青混合料在 40 °C 至 60 °C 的使用温度下表现为固体材料,因此采用了常用于描述固体材料剪切特性的莫尔-库仑准则来确定混合料的内摩擦角和内聚截距。我们设计了一个实验方案,以评估与沥青混合料内摩擦角相关的机械性能,沥青混合料的粘结剂类型包括渗透等级为 50/70 的石油沥青水泥(PAC 50/70)和苯乙烯-丁二烯-苯乙烯(SBS)聚合物改性的石油沥青水泥(E-55/75)。利用莫尔-库仑理论进行了实验室分析,以确定剪切断裂参数。结果表明,在所研究的每个级配范围内,粗颗粒增加 5%,内摩擦角平均增大 1°,直到每种混合物中粗颗粒的比例达到 30-35%。结果表明,剪切断裂参数,尤其是内摩擦角和内聚截距,在沥青混合料抗永久变形方面起着至关重要的作用。结论是内摩擦角的增大有助于提高抗永久变形能力,为优化沥青混合料的机械性能提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of permanent deformation in asphalt mixtures using Mohr–Coulomb criteria

Analysis of permanent deformation in asphalt mixtures using Mohr–Coulomb criteria

This study aimed to investigate the influence of the internal friction angle on the mechanical properties and resistance to permanent deformation of asphalt mixtures. Permanent deformation, resulting from vehicular loads, can occur due to densification, use, and flow of the mixture. Considering that the asphalt mixture behaves as a solid material at service temperatures of 40 °C to 60 °C, the Mohr–Coulomb criterion, commonly used to describe shear characteristics of solid materials, was employed to determine the internal friction angle and cohesive intercept of the mixture. An experimental program was devised to assess the mechanical properties associated with the internal friction angle of asphalt mixtures with asphalt binders of the types Petroleum Asphalt Cement with a penetration grade of 50/70 (PAC 50/70) and Petroleum Asphalt Cement modified with styrene–butadiene–styrene (SBS) polymer (E-55/75). Laboratory analyses were conducted to determine shear rupture parameters, using the Mohr–Coulomb theory. It was observed that an increase of 5% in coarse particles resulted in an average gain of 1° in the internal friction angle for each studied gradation range, up to the limit of 30–35% of coarse particles for each mixture. The results indicated that shear rupture parameters, especially the internal friction angle and cohesive intercept, play a crucial role in the resistance to permanent deformation of asphalt mixtures. It was concluded that an increase in the internal friction angle contributes to greater resistance to permanent deformation, providing valuable insights for optimizing the composition of asphalt mixtures in terms of mechanical performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信