(3+1)- 维非线性演化方程的黎曼-希尔伯特问题

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
{"title":"(3+1)- 维非线性演化方程的黎曼-希尔伯特问题","authors":"","doi":"10.1016/j.wavemoti.2024.103387","DOIUrl":null,"url":null,"abstract":"<div><p>This paper concentrates on a (3+1)-dimensional nonlinear evolution equation. By introducing a transformation, the (3+1)-dimensional nonlinear evolution equation is decomposed into three integrable (1+1)-dimensional models. On the basis of a quartet Lax pair, we build the associated matrix Riemann–Hilbert problem. As a consequence, solving the obtained matrix Riemann–Hilbert problem with the identity jump matrix, corresponding to the reflectionless, the soliton solution to the (3+1)-dimensional nonlinear evolution equation is acquired. Specially, the one-soliton solutions are worked out and analyzed graphically.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riemann–Hilbert problem for a (3+1)-dimensional nonlinear evolution equation\",\"authors\":\"\",\"doi\":\"10.1016/j.wavemoti.2024.103387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper concentrates on a (3+1)-dimensional nonlinear evolution equation. By introducing a transformation, the (3+1)-dimensional nonlinear evolution equation is decomposed into three integrable (1+1)-dimensional models. On the basis of a quartet Lax pair, we build the associated matrix Riemann–Hilbert problem. As a consequence, solving the obtained matrix Riemann–Hilbert problem with the identity jump matrix, corresponding to the reflectionless, the soliton solution to the (3+1)-dimensional nonlinear evolution equation is acquired. Specially, the one-soliton solutions are worked out and analyzed graphically.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001173\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001173","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究(3+1)维非线性演化方程。通过引入变换,(3+1)维非线性演化方程被分解为三个可积分的(1+1)维模型。在四元 Lax 对的基础上,我们建立了相关的矩阵黎曼-希尔伯特问题。因此,用与无反射相对应的同一跃迁矩阵求解得到的矩阵黎曼-希尔伯特问题,就得到了 (3+1)- 维非线性演化方程的孤子解。特别是,对一孤子解进行了计算和图形分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riemann–Hilbert problem for a (3+1)-dimensional nonlinear evolution equation

This paper concentrates on a (3+1)-dimensional nonlinear evolution equation. By introducing a transformation, the (3+1)-dimensional nonlinear evolution equation is decomposed into three integrable (1+1)-dimensional models. On the basis of a quartet Lax pair, we build the associated matrix Riemann–Hilbert problem. As a consequence, solving the obtained matrix Riemann–Hilbert problem with the identity jump matrix, corresponding to the reflectionless, the soliton solution to the (3+1)-dimensional nonlinear evolution equation is acquired. Specially, the one-soliton solutions are worked out and analyzed graphically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信