分数 Kaup-Boussinesq 系统孤子解的提取:比较研究

H. Alsaud, N. Raza, S. Arshed, A. R. Butt, Mustafa Inc
{"title":"分数 Kaup-Boussinesq 系统孤子解的提取:比较研究","authors":"H. Alsaud, N. Raza, S. Arshed, A. R. Butt, Mustafa Inc","doi":"10.31349/revmexfis.70.041302","DOIUrl":null,"url":null,"abstract":"This paper is based on finding soliton solutions to fractional Kaup-Boussinesq (FKB) system. The fractional derivatives such as β-derivative and truncated M-fractional derivative are used in this study. The unified approach, generalized projective riccati equations method (GPREM) and improved tan (φ(ζ)/2)-expansion approaches are efficiently used for obtaining bright soliton, dark soliton, singular soliton, periodic soliton, dark-singular combo soliton and dark-bright combo soliton. The numerical simulations are also carried out by 3D and 2D, graphs of some of the obtained solutions to discuss the fractional effects.","PeriodicalId":207412,"journal":{"name":"Revista Mexicana de Física","volume":"89 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of soliton solutions for the fractional Kaup-Boussinesq system: A comparative study\",\"authors\":\"H. Alsaud, N. Raza, S. Arshed, A. R. Butt, Mustafa Inc\",\"doi\":\"10.31349/revmexfis.70.041302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is based on finding soliton solutions to fractional Kaup-Boussinesq (FKB) system. The fractional derivatives such as β-derivative and truncated M-fractional derivative are used in this study. The unified approach, generalized projective riccati equations method (GPREM) and improved tan (φ(ζ)/2)-expansion approaches are efficiently used for obtaining bright soliton, dark soliton, singular soliton, periodic soliton, dark-singular combo soliton and dark-bright combo soliton. The numerical simulations are also carried out by 3D and 2D, graphs of some of the obtained solutions to discuss the fractional effects.\",\"PeriodicalId\":207412,\"journal\":{\"name\":\"Revista Mexicana de Física\",\"volume\":\"89 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana de Física\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.70.041302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana de Física","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfis.70.041302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于寻找分数 Kaup-Boussinesq (FKB) 系统的孤子解。研究中使用了分数导数,如 β-导数和截断 M-分数导数。统一方法、广义投影里卡提方程法(GPREM)和改进的 tan (φ(ζ)/2) 展开方法被有效地用于获得亮孤子、暗孤子、奇异孤子、周期孤子、暗-奇组合孤子和暗-亮组合孤子。此外,还通过三维和二维数值模拟,对部分求解结果的图形进行了分析,以讨论分数效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction of soliton solutions for the fractional Kaup-Boussinesq system: A comparative study
This paper is based on finding soliton solutions to fractional Kaup-Boussinesq (FKB) system. The fractional derivatives such as β-derivative and truncated M-fractional derivative are used in this study. The unified approach, generalized projective riccati equations method (GPREM) and improved tan (φ(ζ)/2)-expansion approaches are efficiently used for obtaining bright soliton, dark soliton, singular soliton, periodic soliton, dark-singular combo soliton and dark-bright combo soliton. The numerical simulations are also carried out by 3D and 2D, graphs of some of the obtained solutions to discuss the fractional effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信