H. Alsaud, N. Raza, S. Arshed, A. R. Butt, Mustafa Inc
{"title":"分数 Kaup-Boussinesq 系统孤子解的提取:比较研究","authors":"H. Alsaud, N. Raza, S. Arshed, A. R. Butt, Mustafa Inc","doi":"10.31349/revmexfis.70.041302","DOIUrl":null,"url":null,"abstract":"This paper is based on finding soliton solutions to fractional Kaup-Boussinesq (FKB) system. The fractional derivatives such as β-derivative and truncated M-fractional derivative are used in this study. The unified approach, generalized projective riccati equations method (GPREM) and improved tan (φ(ζ)/2)-expansion approaches are efficiently used for obtaining bright soliton, dark soliton, singular soliton, periodic soliton, dark-singular combo soliton and dark-bright combo soliton. The numerical simulations are also carried out by 3D and 2D, graphs of some of the obtained solutions to discuss the fractional effects.","PeriodicalId":207412,"journal":{"name":"Revista Mexicana de Física","volume":"89 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of soliton solutions for the fractional Kaup-Boussinesq system: A comparative study\",\"authors\":\"H. Alsaud, N. Raza, S. Arshed, A. R. Butt, Mustafa Inc\",\"doi\":\"10.31349/revmexfis.70.041302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is based on finding soliton solutions to fractional Kaup-Boussinesq (FKB) system. The fractional derivatives such as β-derivative and truncated M-fractional derivative are used in this study. The unified approach, generalized projective riccati equations method (GPREM) and improved tan (φ(ζ)/2)-expansion approaches are efficiently used for obtaining bright soliton, dark soliton, singular soliton, periodic soliton, dark-singular combo soliton and dark-bright combo soliton. The numerical simulations are also carried out by 3D and 2D, graphs of some of the obtained solutions to discuss the fractional effects.\",\"PeriodicalId\":207412,\"journal\":{\"name\":\"Revista Mexicana de Física\",\"volume\":\"89 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana de Física\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.70.041302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana de Física","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfis.70.041302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文基于寻找分数 Kaup-Boussinesq (FKB) 系统的孤子解。研究中使用了分数导数,如 β-导数和截断 M-分数导数。统一方法、广义投影里卡提方程法(GPREM)和改进的 tan (φ(ζ)/2) 展开方法被有效地用于获得亮孤子、暗孤子、奇异孤子、周期孤子、暗-奇组合孤子和暗-亮组合孤子。此外,还通过三维和二维数值模拟,对部分求解结果的图形进行了分析,以讨论分数效应。
Extraction of soliton solutions for the fractional Kaup-Boussinesq system: A comparative study
This paper is based on finding soliton solutions to fractional Kaup-Boussinesq (FKB) system. The fractional derivatives such as β-derivative and truncated M-fractional derivative are used in this study. The unified approach, generalized projective riccati equations method (GPREM) and improved tan (φ(ζ)/2)-expansion approaches are efficiently used for obtaining bright soliton, dark soliton, singular soliton, periodic soliton, dark-singular combo soliton and dark-bright combo soliton. The numerical simulations are also carried out by 3D and 2D, graphs of some of the obtained solutions to discuss the fractional effects.