使用有限差分法和配位法对奇异 ODE 进行数值处理

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Matthias Hohenegger , Giuseppina Settanni , Ewa B. Weinmüller , Mered Wolde
{"title":"使用有限差分法和配位法对奇异 ODE 进行数值处理","authors":"Matthias Hohenegger ,&nbsp;Giuseppina Settanni ,&nbsp;Ewa B. Weinmüller ,&nbsp;Mered Wolde","doi":"10.1016/j.apnum.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Boundary value problems (BVPs) in ordinary differential equations (ODEs) with singularities arise in numerous mathematical models describing real-life phenomena in natural sciences and engineering. This motivates vivid research activities aiming to characterize the analytical properties of singular problems, to investigate convergence of the standard numerical methods when they are applied to simulate differential equation with singularities, and to provide software for their efficient numerical treatment. There are two well-known, high order numerical methods which we focus on in this paper, the finite difference schemes and the collocation methods. Those methods proved to be dependable and highly accurate in the context of regular differential equations, so the question arises how do they preform for singular problems. While, there is a strong evidence for the collocation schemes to be a robust method to solve singular systems in a stable and efficient way, finite difference schemes are still considered less suitable for this problem class.</p><p>In this paper, we shall compare the performance of the code <span>HOFiD_bvp</span> based on the high order finite difference schemes and <span>bvpsuite2.0</span> based on polynomial collocation, when the codes are applied to singular problems in ODEs. We are fully aware of the difficulties in a code comparison, so in this paper, we will try to only diagnose the potential improvements, we could address in the next update of the codes.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"205 ","pages":"Pages 184-194"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001740/pdfft?md5=54ac20f2fb292c9a9ee04286910e6e1d&pid=1-s2.0-S0168927424001740-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical treatment of singular ODEs using finite difference and collocation methods\",\"authors\":\"Matthias Hohenegger ,&nbsp;Giuseppina Settanni ,&nbsp;Ewa B. Weinmüller ,&nbsp;Mered Wolde\",\"doi\":\"10.1016/j.apnum.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Boundary value problems (BVPs) in ordinary differential equations (ODEs) with singularities arise in numerous mathematical models describing real-life phenomena in natural sciences and engineering. This motivates vivid research activities aiming to characterize the analytical properties of singular problems, to investigate convergence of the standard numerical methods when they are applied to simulate differential equation with singularities, and to provide software for their efficient numerical treatment. There are two well-known, high order numerical methods which we focus on in this paper, the finite difference schemes and the collocation methods. Those methods proved to be dependable and highly accurate in the context of regular differential equations, so the question arises how do they preform for singular problems. While, there is a strong evidence for the collocation schemes to be a robust method to solve singular systems in a stable and efficient way, finite difference schemes are still considered less suitable for this problem class.</p><p>In this paper, we shall compare the performance of the code <span>HOFiD_bvp</span> based on the high order finite difference schemes and <span>bvpsuite2.0</span> based on polynomial collocation, when the codes are applied to singular problems in ODEs. We are fully aware of the difficulties in a code comparison, so in this paper, we will try to only diagnose the potential improvements, we could address in the next update of the codes.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"205 \",\"pages\":\"Pages 184-194\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001740/pdfft?md5=54ac20f2fb292c9a9ee04286910e6e1d&pid=1-s2.0-S0168927424001740-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001740\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001740","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在描述自然科学和工程领域现实生活现象的众多数学模型中,都会出现带奇点的常微分方程(ODEs)中的边界值问题(BVPs)。这激发了生动的研究活动,旨在描述奇点问题的分析特性,研究标准数值方法在模拟具有奇点的微分方程时的收敛性,并提供高效数值处理软件。本文重点研究两种著名的高阶数值方法,即有限差分方案和配位法。这些方法在正则微分方程中被证明是可靠和高精度的,那么问题来了,它们在奇异问题中的表现如何?本文将比较基于高阶有限差分法的 HOFiD_bvp 代码和基于多项式配位法的 bvpsuite2.0 代码在应用于 ODEs 中奇异问题时的性能。我们充分意识到代码比较的困难,因此在本文中,我们将只尝试诊断潜在的改进,我们可以在代码的下一次更新中解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical treatment of singular ODEs using finite difference and collocation methods

Boundary value problems (BVPs) in ordinary differential equations (ODEs) with singularities arise in numerous mathematical models describing real-life phenomena in natural sciences and engineering. This motivates vivid research activities aiming to characterize the analytical properties of singular problems, to investigate convergence of the standard numerical methods when they are applied to simulate differential equation with singularities, and to provide software for their efficient numerical treatment. There are two well-known, high order numerical methods which we focus on in this paper, the finite difference schemes and the collocation methods. Those methods proved to be dependable and highly accurate in the context of regular differential equations, so the question arises how do they preform for singular problems. While, there is a strong evidence for the collocation schemes to be a robust method to solve singular systems in a stable and efficient way, finite difference schemes are still considered less suitable for this problem class.

In this paper, we shall compare the performance of the code HOFiD_bvp based on the high order finite difference schemes and bvpsuite2.0 based on polynomial collocation, when the codes are applied to singular problems in ODEs. We are fully aware of the difficulties in a code comparison, so in this paper, we will try to only diagnose the potential improvements, we could address in the next update of the codes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信