{"title":"儿茶素能减轻异烟肼和利福平联合用药造成的肝细胞损伤","authors":"Sonam Sahu , Nimisha Paul , Ankit Ganeshpurkar , Nazneen Dubey , Aditya Ganeshpurkar","doi":"10.1016/j.arres.2024.100107","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that phyto-constituents possess hepatoprotective properties. The radical scavenging potential of catechin has received substantial research. The goal of the current study was to assess the beneficial effect of Catechin to safeguard rats from liver damage caused by isoniazid and rifampicin. In this investigation, Wistar rats were employed. Administration of isoniazid (100 mg/kg) with rifampicin (100 mg/kg) for 21 days caused hepatocellular injury. The dosages of catechin used were 25, 50, and 100 mg/kg body weight. Blood was drawn at the end of the study, and biochemical tests were performed to determine the enzyme levels. Restoration of AST, ALT, and ALP was brought about by catechin administration (25, 50, and 100 mg/kg body weight). The administration lead to in a restoration of the SOD and catalase levels. The expression of TNF-α, IL-1β, IL-6, MDA, and nitric oxide decreased. The findings prove that catechin had a significant hepatoprotective impact. The hepatoprotective action of catechin might be mediated by the radical scavenging and cytokine suppressing effects.</p></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"12 ","pages":"Article 100107"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667137924000146/pdfft?md5=ed1de63fa0ac231b837c894e6379cd38&pid=1-s2.0-S2667137924000146-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Catechin ameliorates hepatocellular damage caused by coadministration of isoniazid and rifampicin\",\"authors\":\"Sonam Sahu , Nimisha Paul , Ankit Ganeshpurkar , Nazneen Dubey , Aditya Ganeshpurkar\",\"doi\":\"10.1016/j.arres.2024.100107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well known that phyto-constituents possess hepatoprotective properties. The radical scavenging potential of catechin has received substantial research. The goal of the current study was to assess the beneficial effect of Catechin to safeguard rats from liver damage caused by isoniazid and rifampicin. In this investigation, Wistar rats were employed. Administration of isoniazid (100 mg/kg) with rifampicin (100 mg/kg) for 21 days caused hepatocellular injury. The dosages of catechin used were 25, 50, and 100 mg/kg body weight. Blood was drawn at the end of the study, and biochemical tests were performed to determine the enzyme levels. Restoration of AST, ALT, and ALP was brought about by catechin administration (25, 50, and 100 mg/kg body weight). The administration lead to in a restoration of the SOD and catalase levels. The expression of TNF-α, IL-1β, IL-6, MDA, and nitric oxide decreased. The findings prove that catechin had a significant hepatoprotective impact. The hepatoprotective action of catechin might be mediated by the radical scavenging and cytokine suppressing effects.</p></div>\",\"PeriodicalId\":72106,\"journal\":{\"name\":\"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe\",\"volume\":\"12 \",\"pages\":\"Article 100107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667137924000146/pdfft?md5=ed1de63fa0ac231b837c894e6379cd38&pid=1-s2.0-S2667137924000146-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667137924000146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667137924000146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Catechin ameliorates hepatocellular damage caused by coadministration of isoniazid and rifampicin
It is well known that phyto-constituents possess hepatoprotective properties. The radical scavenging potential of catechin has received substantial research. The goal of the current study was to assess the beneficial effect of Catechin to safeguard rats from liver damage caused by isoniazid and rifampicin. In this investigation, Wistar rats were employed. Administration of isoniazid (100 mg/kg) with rifampicin (100 mg/kg) for 21 days caused hepatocellular injury. The dosages of catechin used were 25, 50, and 100 mg/kg body weight. Blood was drawn at the end of the study, and biochemical tests were performed to determine the enzyme levels. Restoration of AST, ALT, and ALP was brought about by catechin administration (25, 50, and 100 mg/kg body weight). The administration lead to in a restoration of the SOD and catalase levels. The expression of TNF-α, IL-1β, IL-6, MDA, and nitric oxide decreased. The findings prove that catechin had a significant hepatoprotective impact. The hepatoprotective action of catechin might be mediated by the radical scavenging and cytokine suppressing effects.