论预应力梁在非线性挠性自由振荡下的稳定性

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Laura Di Gregorio, Walter Lacarbonara
{"title":"论预应力梁在非线性挠性自由振荡下的稳定性","authors":"Laura Di Gregorio, Walter Lacarbonara","doi":"10.1098/rspa.2024.0057","DOIUrl":null,"url":null,"abstract":"We study the nonlinear free undamped motions of a hinged-hinged beam exhibiting geometric stretching-induced nonlinearity and arbitrary initial conditions. We treat the governing integral-partial-differential equation of motion as an infinite dimensional Hamiltonian system. We analytically obtain a quantitative Birkhoff Normal Form via a nonlinear coordinate transformation that yields the reduced (modulation) equations describing the free oscillations to within a certain nonlinear order with an estimate of the reminder. The obtained solutions provide a very precise description of small amplitude oscillations over large time scales. The analytical optimization of the involved estimates yields time stability results obtained for plausible values of the physical quantities and of the perturbation parameter. The role played by internal resonances in determining the time stability of the solution is highlighted and discussed. We show that initial conditions with a finite number of eigenfunctions yield bounded solutions living on invariant subspaces of the involved modes at all times. Conversely, initial conditions comprising the full (infinite) spectrum of eigenfunctions provide solutions for which time stability for all times cannot be stated.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the stability of prestressed beams undergoing nonlinear flexural free oscillations\",\"authors\":\"Laura Di Gregorio, Walter Lacarbonara\",\"doi\":\"10.1098/rspa.2024.0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the nonlinear free undamped motions of a hinged-hinged beam exhibiting geometric stretching-induced nonlinearity and arbitrary initial conditions. We treat the governing integral-partial-differential equation of motion as an infinite dimensional Hamiltonian system. We analytically obtain a quantitative Birkhoff Normal Form via a nonlinear coordinate transformation that yields the reduced (modulation) equations describing the free oscillations to within a certain nonlinear order with an estimate of the reminder. The obtained solutions provide a very precise description of small amplitude oscillations over large time scales. The analytical optimization of the involved estimates yields time stability results obtained for plausible values of the physical quantities and of the perturbation parameter. The role played by internal resonances in determining the time stability of the solution is highlighted and discussed. We show that initial conditions with a finite number of eigenfunctions yield bounded solutions living on invariant subspaces of the involved modes at all times. Conversely, initial conditions comprising the full (infinite) spectrum of eigenfunctions provide solutions for which time stability for all times cannot be stated.\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2024.0057\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2024.0057","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了铰链-铰链梁的非线性自由无阻尼运动,该运动具有几何拉伸引起的非线性和任意初始条件。我们将支配运动的积分-偏微分方程视为一个无限维哈密顿系统。通过非线性坐标变换,我们分析得到了定量的伯克霍夫标准方程,从而得到了描述自由振荡的简化(调制)方程,该方程的非线性阶数在一定范围内,并对阶数进行了估计。所得到的解可以非常精确地描述大时间尺度上的小振幅振荡。通过对相关估计值进行分析优化,可以得到物理量和扰动参数的合理值的时间稳定性结果。我们强调并讨论了内部共振在决定解的时间稳定性方面所起的作用。我们的研究表明,具有有限数量特征函数的初始条件会产生有界解,这些解在任何时候都存在于相关模态的不变子空间中。反之,包含全部(无限)特征函数谱的初始条件所产生的解,其在所有时间内的时间稳定性都是不确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stability of prestressed beams undergoing nonlinear flexural free oscillations
We study the nonlinear free undamped motions of a hinged-hinged beam exhibiting geometric stretching-induced nonlinearity and arbitrary initial conditions. We treat the governing integral-partial-differential equation of motion as an infinite dimensional Hamiltonian system. We analytically obtain a quantitative Birkhoff Normal Form via a nonlinear coordinate transformation that yields the reduced (modulation) equations describing the free oscillations to within a certain nonlinear order with an estimate of the reminder. The obtained solutions provide a very precise description of small amplitude oscillations over large time scales. The analytical optimization of the involved estimates yields time stability results obtained for plausible values of the physical quantities and of the perturbation parameter. The role played by internal resonances in determining the time stability of the solution is highlighted and discussed. We show that initial conditions with a finite number of eigenfunctions yield bounded solutions living on invariant subspaces of the involved modes at all times. Conversely, initial conditions comprising the full (infinite) spectrum of eigenfunctions provide solutions for which time stability for all times cannot be stated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
227
审稿时长
3.0 months
期刊介绍: Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信