{"title":"从生物质角度看肺动脉高压发病机制和疾病调节疗法的机遇","authors":"Matthew L. Steinhauser MD , Bradley A. Maron MD","doi":"10.1016/j.jacbts.2024.04.009","DOIUrl":null,"url":null,"abstract":"<div><div>Fibroproliferative remodeling of distal pulmonary arterioles is a cornerstone characteristic of pulmonary arterial hypertension (PAH). Data from contemporary quantitative imaging suggest that anabolic synthesis of macromolecular substrate, defined here as <em>biomass</em>, is the proximate event that causes vascular remodeling via pathogenic changes to DNA, collagen, cytoskeleton, and lipid membranes. Modifying biomass is achievable but requires tilting the balance in favor of endogenous degradation over synthetic pathways in order to advance the first-ever disease-modifying PAH pharmacotherapy. Viewing PAH pathobiology through the lens of biomass represents an opportunity to decipher novel determinants of disease inception and inform interventions that induce reverse remodeling.</div></div>","PeriodicalId":14831,"journal":{"name":"JACC: Basic to Translational Science","volume":"9 10","pages":"Pages 1252-1263"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viewing Pulmonary Arterial Hypertension Pathogenesis and Opportunities for Disease-Modifying Therapy Through the Lens of Biomass\",\"authors\":\"Matthew L. Steinhauser MD , Bradley A. Maron MD\",\"doi\":\"10.1016/j.jacbts.2024.04.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fibroproliferative remodeling of distal pulmonary arterioles is a cornerstone characteristic of pulmonary arterial hypertension (PAH). Data from contemporary quantitative imaging suggest that anabolic synthesis of macromolecular substrate, defined here as <em>biomass</em>, is the proximate event that causes vascular remodeling via pathogenic changes to DNA, collagen, cytoskeleton, and lipid membranes. Modifying biomass is achievable but requires tilting the balance in favor of endogenous degradation over synthetic pathways in order to advance the first-ever disease-modifying PAH pharmacotherapy. Viewing PAH pathobiology through the lens of biomass represents an opportunity to decipher novel determinants of disease inception and inform interventions that induce reverse remodeling.</div></div>\",\"PeriodicalId\":14831,\"journal\":{\"name\":\"JACC: Basic to Translational Science\",\"volume\":\"9 10\",\"pages\":\"Pages 1252-1263\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACC: Basic to Translational Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452302X24001827\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC: Basic to Translational Science","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452302X24001827","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Viewing Pulmonary Arterial Hypertension Pathogenesis and Opportunities for Disease-Modifying Therapy Through the Lens of Biomass
Fibroproliferative remodeling of distal pulmonary arterioles is a cornerstone characteristic of pulmonary arterial hypertension (PAH). Data from contemporary quantitative imaging suggest that anabolic synthesis of macromolecular substrate, defined here as biomass, is the proximate event that causes vascular remodeling via pathogenic changes to DNA, collagen, cytoskeleton, and lipid membranes. Modifying biomass is achievable but requires tilting the balance in favor of endogenous degradation over synthetic pathways in order to advance the first-ever disease-modifying PAH pharmacotherapy. Viewing PAH pathobiology through the lens of biomass represents an opportunity to decipher novel determinants of disease inception and inform interventions that induce reverse remodeling.
期刊介绍:
JACC: Basic to Translational Science is an open access journal that is part of the renowned Journal of the American College of Cardiology (JACC). It focuses on advancing the field of Translational Cardiovascular Medicine and aims to accelerate the translation of new scientific discoveries into therapies that improve outcomes for patients with or at risk for Cardiovascular Disease. The journal covers thematic areas such as pre-clinical research, clinical trials, personalized medicine, novel drugs, devices, and biologics, proteomics, genomics, and metabolomics, as well as early phase clinical trial methodology.