{"title":"D-蛋氨酸诱导的 DN 酶可驱散已形成的伪马勒氏伯克霍尔德菌生物膜并提高对头孢他啶的敏感性","authors":"","doi":"10.1016/j.bioflm.2024.100213","DOIUrl":null,"url":null,"abstract":"<div><p><em>Burkholderia pseudomallei</em> biofilm is correlated with pathogenesis, antibiotic resistance, and relapsing cases of melioidosis, leading to challenges in clinical management. There is increasing interest in employing biofilm dispersal agents as adjunctive treatments for biofilm-associated infections. Methionine (Met) has shown promise as an anti-biofilm agent by inducing bacterial DNase production, resulting in the degradation of extracellular DNA (eDNA) and dispersion of bacterial biofilm. In this study, we investigated the impact of 0.05–50 μM D-Met and L-Met on the 24-h established biofilm of a clinical isolate, <em>B. pseudomallei</em> H777. Our findings revealed the ability of D-Met and L-Met to disperse the established biofilm in a non-dose-dependent manner accompanied by eDNA depletion. Real-time PCR analysis further identified an up-regulation of bacterial nuclease genes, including <em>recJ</em>, <em>eddB</em>, <em>nth</em>, <em>xth</em>, and <em>recD,</em> in the presence of 0.05 μM D-Met. Similarly, <em>recJ</em> and <em>eddB</em> in <em>B. pseudomallei</em> were up-regulated in response to the presence of 0.05 μM L-Met. Notably, D-Met enhanced the susceptibility of <em>B. pseudomallei</em> H777 biofilm cells to ceftazidime. Our findings indicate a correlation between methionine supplementation and the up-regulation of nuclease genes, leading to eDNA depletion and the dispersal of preformed <em>B. pseudomallei</em> H777 biofilm. This enhances the susceptibility of biofilm cells to ceftazidime, showing promise in combating biofilm-associated <em>B. pseudomallei</em> infections.</p></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590207524000388/pdfft?md5=1de1bbe8ed2c7737cf33f49a0e39809c&pid=1-s2.0-S2590207524000388-main.pdf","citationCount":"0","resultStr":"{\"title\":\"d-Methionine-induced DNases disperse established Burkholderia pseudomallei biofilms and promotes ceftazidime susceptibility\",\"authors\":\"\",\"doi\":\"10.1016/j.bioflm.2024.100213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Burkholderia pseudomallei</em> biofilm is correlated with pathogenesis, antibiotic resistance, and relapsing cases of melioidosis, leading to challenges in clinical management. There is increasing interest in employing biofilm dispersal agents as adjunctive treatments for biofilm-associated infections. Methionine (Met) has shown promise as an anti-biofilm agent by inducing bacterial DNase production, resulting in the degradation of extracellular DNA (eDNA) and dispersion of bacterial biofilm. In this study, we investigated the impact of 0.05–50 μM D-Met and L-Met on the 24-h established biofilm of a clinical isolate, <em>B. pseudomallei</em> H777. Our findings revealed the ability of D-Met and L-Met to disperse the established biofilm in a non-dose-dependent manner accompanied by eDNA depletion. Real-time PCR analysis further identified an up-regulation of bacterial nuclease genes, including <em>recJ</em>, <em>eddB</em>, <em>nth</em>, <em>xth</em>, and <em>recD,</em> in the presence of 0.05 μM D-Met. Similarly, <em>recJ</em> and <em>eddB</em> in <em>B. pseudomallei</em> were up-regulated in response to the presence of 0.05 μM L-Met. Notably, D-Met enhanced the susceptibility of <em>B. pseudomallei</em> H777 biofilm cells to ceftazidime. Our findings indicate a correlation between methionine supplementation and the up-regulation of nuclease genes, leading to eDNA depletion and the dispersal of preformed <em>B. pseudomallei</em> H777 biofilm. This enhances the susceptibility of biofilm cells to ceftazidime, showing promise in combating biofilm-associated <em>B. pseudomallei</em> infections.</p></div>\",\"PeriodicalId\":55844,\"journal\":{\"name\":\"Biofilm\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590207524000388/pdfft?md5=1de1bbe8ed2c7737cf33f49a0e39809c&pid=1-s2.0-S2590207524000388-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofilm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590207524000388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590207524000388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
d-Methionine-induced DNases disperse established Burkholderia pseudomallei biofilms and promotes ceftazidime susceptibility
Burkholderia pseudomallei biofilm is correlated with pathogenesis, antibiotic resistance, and relapsing cases of melioidosis, leading to challenges in clinical management. There is increasing interest in employing biofilm dispersal agents as adjunctive treatments for biofilm-associated infections. Methionine (Met) has shown promise as an anti-biofilm agent by inducing bacterial DNase production, resulting in the degradation of extracellular DNA (eDNA) and dispersion of bacterial biofilm. In this study, we investigated the impact of 0.05–50 μM D-Met and L-Met on the 24-h established biofilm of a clinical isolate, B. pseudomallei H777. Our findings revealed the ability of D-Met and L-Met to disperse the established biofilm in a non-dose-dependent manner accompanied by eDNA depletion. Real-time PCR analysis further identified an up-regulation of bacterial nuclease genes, including recJ, eddB, nth, xth, and recD, in the presence of 0.05 μM D-Met. Similarly, recJ and eddB in B. pseudomallei were up-regulated in response to the presence of 0.05 μM L-Met. Notably, D-Met enhanced the susceptibility of B. pseudomallei H777 biofilm cells to ceftazidime. Our findings indicate a correlation between methionine supplementation and the up-regulation of nuclease genes, leading to eDNA depletion and the dispersal of preformed B. pseudomallei H777 biofilm. This enhances the susceptibility of biofilm cells to ceftazidime, showing promise in combating biofilm-associated B. pseudomallei infections.