{"title":"用于摩托车防护服的棉布和高性能纤维混纺牛仔布的机械特性","authors":"Gayathri Natarajan, T. Palani Rajan","doi":"10.1520/jte20230598","DOIUrl":null,"url":null,"abstract":"\n This research paper article thoroughly investigates the tensile, tear, and abrasion properties of high-performance cotton denim fabrics incorporating para-aramid and ultrahigh molecular weight polyethylene (UHMWPE) fibers. It compares these high-performance blended denim fabrics with traditional 100 % cotton fabric material. The findings indicate that fabrics containing UHMWPE and para-aramid fibers demonstrate notably greater strength and durability compared with pure cotton fabrics. Factors such as yarn thickness, twist, fabric weight, cover factor, and the blend proportion of high-performance fibers contribute to enhanced tensile strength and abrasion resistance. Among the tested samples, the blend with 30 % cotton and 70 % UHMWPE fibers, weighing 430 g/m2 (S9), exhibits the most superior performance in terms of tensile strength. These fabrics also exhibit remarkable tear resistance, even under extreme conditions. Sample S9 excels in abrasion resistance, qualifying it for Zone 3 Level 1 protection. The study underscores the potential of these fabrics to offer outstanding protection against abrasion in diverse applications. Additionally, it has been observed that fabrics generally display higher tensile strength and abrasion resistance along the warp direction, owing to a higher yarn density. The analysis of variance and Tukey Honestly Significant Difference (HSD) tests confirm the significant influence of fiber composition on fabric properties based on the statistical analyses that have been conducted.","PeriodicalId":17109,"journal":{"name":"Journal of Testing and Evaluation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Properties of Cotton and High-Performance Fiber Blended Denim Fabrics for Motorcycle Protective Clothing\",\"authors\":\"Gayathri Natarajan, T. Palani Rajan\",\"doi\":\"10.1520/jte20230598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This research paper article thoroughly investigates the tensile, tear, and abrasion properties of high-performance cotton denim fabrics incorporating para-aramid and ultrahigh molecular weight polyethylene (UHMWPE) fibers. It compares these high-performance blended denim fabrics with traditional 100 % cotton fabric material. The findings indicate that fabrics containing UHMWPE and para-aramid fibers demonstrate notably greater strength and durability compared with pure cotton fabrics. Factors such as yarn thickness, twist, fabric weight, cover factor, and the blend proportion of high-performance fibers contribute to enhanced tensile strength and abrasion resistance. Among the tested samples, the blend with 30 % cotton and 70 % UHMWPE fibers, weighing 430 g/m2 (S9), exhibits the most superior performance in terms of tensile strength. These fabrics also exhibit remarkable tear resistance, even under extreme conditions. Sample S9 excels in abrasion resistance, qualifying it for Zone 3 Level 1 protection. The study underscores the potential of these fabrics to offer outstanding protection against abrasion in diverse applications. Additionally, it has been observed that fabrics generally display higher tensile strength and abrasion resistance along the warp direction, owing to a higher yarn density. The analysis of variance and Tukey Honestly Significant Difference (HSD) tests confirm the significant influence of fiber composition on fabric properties based on the statistical analyses that have been conducted.\",\"PeriodicalId\":17109,\"journal\":{\"name\":\"Journal of Testing and Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Testing and Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1520/jte20230598\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Testing and Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1520/jte20230598","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Mechanical Properties of Cotton and High-Performance Fiber Blended Denim Fabrics for Motorcycle Protective Clothing
This research paper article thoroughly investigates the tensile, tear, and abrasion properties of high-performance cotton denim fabrics incorporating para-aramid and ultrahigh molecular weight polyethylene (UHMWPE) fibers. It compares these high-performance blended denim fabrics with traditional 100 % cotton fabric material. The findings indicate that fabrics containing UHMWPE and para-aramid fibers demonstrate notably greater strength and durability compared with pure cotton fabrics. Factors such as yarn thickness, twist, fabric weight, cover factor, and the blend proportion of high-performance fibers contribute to enhanced tensile strength and abrasion resistance. Among the tested samples, the blend with 30 % cotton and 70 % UHMWPE fibers, weighing 430 g/m2 (S9), exhibits the most superior performance in terms of tensile strength. These fabrics also exhibit remarkable tear resistance, even under extreme conditions. Sample S9 excels in abrasion resistance, qualifying it for Zone 3 Level 1 protection. The study underscores the potential of these fabrics to offer outstanding protection against abrasion in diverse applications. Additionally, it has been observed that fabrics generally display higher tensile strength and abrasion resistance along the warp direction, owing to a higher yarn density. The analysis of variance and Tukey Honestly Significant Difference (HSD) tests confirm the significant influence of fiber composition on fabric properties based on the statistical analyses that have been conducted.
期刊介绍:
This journal is published in six issues per year. Some issues, in whole or in part, may be Special Issues focused on a topic of interest to our readers.
This flagship ASTM journal is a multi-disciplinary forum for the applied sciences and engineering. Published bimonthly, the Journal of Testing and Evaluation presents new technical information, derived from field and laboratory testing, on the performance, quantitative characterization, and evaluation of materials. Papers present new methods and data along with critical evaluations; report users'' experience with test methods and results of interlaboratory testing and analysis; and stimulate new ideas in the fields of testing and evaluation.
Major topic areas are fatigue and fracture, mechanical testing, and fire testing. Also publishes review articles, technical notes, research briefs and commentary.