在无前驱体的氧化铜上原位合成定向碲化锌锰铜:先进超级电容器混合电极范例的实验和理论研究

IF 17.9 2区 材料科学 Q1 Engineering
Muhammad Ahmad , Tehseen Nawaz , Iftikhar Hussain , Xi Chen , Shahid Ali Khan , Yassine Eddahani , B. Moses Abraham , Shafqat Ali , Ci Wang , Kaili Zhang
{"title":"在无前驱体的氧化铜上原位合成定向碲化锌锰铜:先进超级电容器混合电极范例的实验和理论研究","authors":"Muhammad Ahmad ,&nbsp;Tehseen Nawaz ,&nbsp;Iftikhar Hussain ,&nbsp;Xi Chen ,&nbsp;Shahid Ali Khan ,&nbsp;Yassine Eddahani ,&nbsp;B. Moses Abraham ,&nbsp;Shafqat Ali ,&nbsp;Ci Wang ,&nbsp;Kaili Zhang","doi":"10.1016/j.nanoms.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>The evolution of energy storage technology has seen remarkable progress, with a shift from pure metals to sophisticated, tailor-made active materials. The synthesis of nanostructures with exceptional properties is crucial in the advancement of electrode materials. In this regard, our study highlights the fabrication of a novel, oriented heterostructure comprised of Zn-Mn-Co-telluride grown on a pre-oxidized copper mesh using a hydrothermal method followed by a solvothermal process. This innovative approach leads to the formation of the Zn-Mn-Co-telluride@CuO@Cu heterostructure, which demonstrates the unique oriented morphology. It outperforms both Zn-Mn-Co-telluride@Cu and CuO@Cu by exhibiting lower electrical resistivity, increased redox activity, higher specific capacity, and improved ion diffusion characteristics. The conductivity enhancements of the heterostructure are corroborated by density functional theory (DFT) calculations. When utilized in a hybrid supercapacitor (HSC) alongside activated carbon (AC) electrodes, the Zn-Mn-Co-telluride@CuO@Cu heterostructure-based HSC achieves an energy density of 75.7 ​Wh kg<sup>−1</sup>. Such findings underscore the potential of these novel electrode materials to significantly impact the design of next-generation supercapacitor devices.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 4","pages":"Pages 555-563"},"PeriodicalIF":17.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ synthesis of oriented Zn-Mn-Co-telluride on precursor free CuO: An experimental and theoretical study of hybrid electrode paradigm for advanced supercapacitors\",\"authors\":\"Muhammad Ahmad ,&nbsp;Tehseen Nawaz ,&nbsp;Iftikhar Hussain ,&nbsp;Xi Chen ,&nbsp;Shahid Ali Khan ,&nbsp;Yassine Eddahani ,&nbsp;B. Moses Abraham ,&nbsp;Shafqat Ali ,&nbsp;Ci Wang ,&nbsp;Kaili Zhang\",\"doi\":\"10.1016/j.nanoms.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The evolution of energy storage technology has seen remarkable progress, with a shift from pure metals to sophisticated, tailor-made active materials. The synthesis of nanostructures with exceptional properties is crucial in the advancement of electrode materials. In this regard, our study highlights the fabrication of a novel, oriented heterostructure comprised of Zn-Mn-Co-telluride grown on a pre-oxidized copper mesh using a hydrothermal method followed by a solvothermal process. This innovative approach leads to the formation of the Zn-Mn-Co-telluride@CuO@Cu heterostructure, which demonstrates the unique oriented morphology. It outperforms both Zn-Mn-Co-telluride@Cu and CuO@Cu by exhibiting lower electrical resistivity, increased redox activity, higher specific capacity, and improved ion diffusion characteristics. The conductivity enhancements of the heterostructure are corroborated by density functional theory (DFT) calculations. When utilized in a hybrid supercapacitor (HSC) alongside activated carbon (AC) electrodes, the Zn-Mn-Co-telluride@CuO@Cu heterostructure-based HSC achieves an energy density of 75.7 ​Wh kg<sup>−1</sup>. Such findings underscore the potential of these novel electrode materials to significantly impact the design of next-generation supercapacitor devices.</div></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"7 4\",\"pages\":\"Pages 555-563\"},\"PeriodicalIF\":17.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965124001065\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124001065","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

随着从纯金属到复杂的、量身定制的活性材料的转变,储能技术的发展取得了显著的进步。具有特殊性能的纳米结构的合成对电极材料的发展至关重要。在这方面,我们的研究强调了一种由锌-锰-碲化钴组成的新型取向异质结构的制备,该异质结构采用水热法和溶剂热法在预氧化铜网上生长。这种创新的方法导致Zn-Mn-Co-telluride@CuO@Cu异质结构的形成,展示了独特的取向形态。它比Zn-Mn-Co-telluride@Cu和CuO@Cu具有更低的电阻率、更高的氧化还原活性、更高的比容量和更好的离子扩散特性。密度泛函理论(DFT)计算证实了异质结构的电导率增强。当与活性炭(AC)电极一起用于混合超级电容器(HSC)时,Zn-Mn-Co-telluride@CuO@Cu异质结构的HSC实现了75.7 Wh kg−1的能量密度。这些发现强调了这些新型电极材料对下一代超级电容器器件设计产生重大影响的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ synthesis of oriented Zn-Mn-Co-telluride on precursor free CuO: An experimental and theoretical study of hybrid electrode paradigm for advanced supercapacitors
The evolution of energy storage technology has seen remarkable progress, with a shift from pure metals to sophisticated, tailor-made active materials. The synthesis of nanostructures with exceptional properties is crucial in the advancement of electrode materials. In this regard, our study highlights the fabrication of a novel, oriented heterostructure comprised of Zn-Mn-Co-telluride grown on a pre-oxidized copper mesh using a hydrothermal method followed by a solvothermal process. This innovative approach leads to the formation of the Zn-Mn-Co-telluride@CuO@Cu heterostructure, which demonstrates the unique oriented morphology. It outperforms both Zn-Mn-Co-telluride@Cu and CuO@Cu by exhibiting lower electrical resistivity, increased redox activity, higher specific capacity, and improved ion diffusion characteristics. The conductivity enhancements of the heterostructure are corroborated by density functional theory (DFT) calculations. When utilized in a hybrid supercapacitor (HSC) alongside activated carbon (AC) electrodes, the Zn-Mn-Co-telluride@CuO@Cu heterostructure-based HSC achieves an energy density of 75.7 ​Wh kg−1. Such findings underscore the potential of these novel electrode materials to significantly impact the design of next-generation supercapacitor devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信