Ke Yang , Dongyu Ji , Hong Ji , Zhixiang Xing , Juncheng Jiang , Kai Zheng , Guangyu Liu , Yixuan Yin
{"title":"多巴胺涂层粉末抑制甲烷爆炸的实验研究","authors":"Ke Yang , Dongyu Ji , Hong Ji , Zhixiang Xing , Juncheng Jiang , Kai Zheng , Guangyu Liu , Yixuan Yin","doi":"10.1016/j.jlp.2024.105392","DOIUrl":null,"url":null,"abstract":"<div><p>Natural gas is an important clean energy source, occupying an increasingly important position in the composition of energy consumption. However, its safety issues cannot be underestimated and are highly worth studying. This article conducted methane explosion experiments on the self-developed acrylic pipeline experimental platform, using Al(OH)<sub>3</sub> and NaHCO<sub>3</sub> powder, and dopamine powder. After a series of centrifugation, purification, catalysis, stillness, and high-temperature drying steps, the modified polydopamine-coated powder was obtained. To reduce the impact of methane explosion, the self-polymerization of dopamine to synthesize polydopamine was studied. Finding the optimal coating concentration through multiple sets of experiments. Conduct experiments on dopamine-coated aluminum hydroxide and powder to suppress explosions under different concentrations of methane conditions, and study the effect of polydopamine-coated aluminum hydroxide and sodium bicarbonate powder on methane explosions at different concentrations.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"91 ","pages":"Article 105392"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of methane explosion suppression by dopamine-coated powder\",\"authors\":\"Ke Yang , Dongyu Ji , Hong Ji , Zhixiang Xing , Juncheng Jiang , Kai Zheng , Guangyu Liu , Yixuan Yin\",\"doi\":\"10.1016/j.jlp.2024.105392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural gas is an important clean energy source, occupying an increasingly important position in the composition of energy consumption. However, its safety issues cannot be underestimated and are highly worth studying. This article conducted methane explosion experiments on the self-developed acrylic pipeline experimental platform, using Al(OH)<sub>3</sub> and NaHCO<sub>3</sub> powder, and dopamine powder. After a series of centrifugation, purification, catalysis, stillness, and high-temperature drying steps, the modified polydopamine-coated powder was obtained. To reduce the impact of methane explosion, the self-polymerization of dopamine to synthesize polydopamine was studied. Finding the optimal coating concentration through multiple sets of experiments. Conduct experiments on dopamine-coated aluminum hydroxide and powder to suppress explosions under different concentrations of methane conditions, and study the effect of polydopamine-coated aluminum hydroxide and sodium bicarbonate powder on methane explosions at different concentrations.</p></div>\",\"PeriodicalId\":16291,\"journal\":{\"name\":\"Journal of Loss Prevention in The Process Industries\",\"volume\":\"91 \",\"pages\":\"Article 105392\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Loss Prevention in The Process Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950423024001505\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024001505","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Experimental study of methane explosion suppression by dopamine-coated powder
Natural gas is an important clean energy source, occupying an increasingly important position in the composition of energy consumption. However, its safety issues cannot be underestimated and are highly worth studying. This article conducted methane explosion experiments on the self-developed acrylic pipeline experimental platform, using Al(OH)3 and NaHCO3 powder, and dopamine powder. After a series of centrifugation, purification, catalysis, stillness, and high-temperature drying steps, the modified polydopamine-coated powder was obtained. To reduce the impact of methane explosion, the self-polymerization of dopamine to synthesize polydopamine was studied. Finding the optimal coating concentration through multiple sets of experiments. Conduct experiments on dopamine-coated aluminum hydroxide and powder to suppress explosions under different concentrations of methane conditions, and study the effect of polydopamine-coated aluminum hydroxide and sodium bicarbonate powder on methane explosions at different concentrations.
期刊介绍:
The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.