通过远程外延合成范德华拉伸锑

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
{"title":"通过远程外延合成范德华拉伸锑","authors":"","doi":"10.1016/j.susc.2024.122548","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional antimonene with a honeycomb structure has attracted significant attention in recent years due to its novel properties and tunable electronic structure as varying applied in-plane strain. Yet, applying epitaxially strained antimonene is greatly limited by the strong coupling with the metal substrates. Here, we demonstrate the synthesis of the van der Waals stretched antimonene on graphene/Cu(111) substrate via remote epitaxy. It is found that, as corroborated by atomic force microscopy and reflection high-energy electron diffraction, the lattice of the antimonene can be remotely stretched by the underlying Cu(111). The graphene layer prevents antimonene from forming the surface alloy with Cu(111), which is also confirmed by Raman spectroscopy results. Our study not only provides a way to regulate the lattice of the epitaxial layers remotely but also provides a new idea for developing new potential topological materials.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Van der Waals stretched antimonene via remote epitaxy\",\"authors\":\"\",\"doi\":\"10.1016/j.susc.2024.122548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional antimonene with a honeycomb structure has attracted significant attention in recent years due to its novel properties and tunable electronic structure as varying applied in-plane strain. Yet, applying epitaxially strained antimonene is greatly limited by the strong coupling with the metal substrates. Here, we demonstrate the synthesis of the van der Waals stretched antimonene on graphene/Cu(111) substrate via remote epitaxy. It is found that, as corroborated by atomic force microscopy and reflection high-energy electron diffraction, the lattice of the antimonene can be remotely stretched by the underlying Cu(111). The graphene layer prevents antimonene from forming the surface alloy with Cu(111), which is also confirmed by Raman spectroscopy results. Our study not only provides a way to regulate the lattice of the epitaxial layers remotely but also provides a new idea for developing new potential topological materials.</p></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824000992\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824000992","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

蜂窝状结构的二维锑近年来备受关注,因为它具有新颖的特性和可随施加的面内应变变化而调整的电子结构。然而,外延应变锑烯的应用受到与金属基底强耦合的极大限制。在这里,我们展示了通过远程外延在石墨烯/铜(111)基底上合成范德华拉伸锑。原子力显微镜和反射高能电子衍射证实,锑的晶格可以被底层的 Cu(111) 远距离拉伸。石墨烯层阻止了锑与 Cu(111) 形成表面合金,拉曼光谱结果也证实了这一点。我们的研究不仅提供了一种远程调节外延层晶格的方法,还为开发新的潜在拓扑材料提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of Van der Waals stretched antimonene via remote epitaxy

Synthesis of Van der Waals stretched antimonene via remote epitaxy

Two-dimensional antimonene with a honeycomb structure has attracted significant attention in recent years due to its novel properties and tunable electronic structure as varying applied in-plane strain. Yet, applying epitaxially strained antimonene is greatly limited by the strong coupling with the metal substrates. Here, we demonstrate the synthesis of the van der Waals stretched antimonene on graphene/Cu(111) substrate via remote epitaxy. It is found that, as corroborated by atomic force microscopy and reflection high-energy electron diffraction, the lattice of the antimonene can be remotely stretched by the underlying Cu(111). The graphene layer prevents antimonene from forming the surface alloy with Cu(111), which is also confirmed by Raman spectroscopy results. Our study not only provides a way to regulate the lattice of the epitaxial layers remotely but also provides a new idea for developing new potential topological materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信