{"title":"固液相变材料微胶囊:合成策略、热存储及其他","authors":"","doi":"10.1016/j.pnsc.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><p><span>Thermal energy storage is crucial in the context of achieving carbon neutrality. Phase change latent heat stands out among various thermal storage methods due to the high </span>energy density<span> of phase change materials<span> (PCMs). PCMs possess unique characteristics such as tunable thermal storage or/and release processes, constant phase-transition temperatures, and changes in physical state. However, solid-liquid PCMs cannot be directly utilized due to the liquid leakage in their melted state. The encapsulation of PCM microcapsules (PCMMs) is essential for overcoming limitations and optimizing functionalities of the PCMs. Encapsulation strategies play a key role in considering factors like morphology, structure, physicochemical properties, and specific applications. Furthermore, PCMMs can expand their potential applications by incorporating functional nano-materials within their shells or introducing specific components into their cores during the synthesis process. This review examines various encapsulation strategies for PCMMs, including physical, physicochemical, and chemical methods. Various applications of PCMMs are summarized and analyzed with regards to the characteristics of PCMs in thermal storage, temperature control, and state transformation. Furthermore, the reinforcement strategies or/and design considerations of PCMMs are crucial for meeting specific requirements, such as conventional latent heat storage, thermal protection, and thermal-triggered intelligent materials. Finally, it discusses current challenges, proposed solutions, and future research directions in the field of PCMMs, particularly Janus particle modified PCMMs.</span></span></p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid-liquid phase change materials microcapsules: Synthesis strategies, thermal storage and beyond\",\"authors\":\"\",\"doi\":\"10.1016/j.pnsc.2024.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Thermal energy storage is crucial in the context of achieving carbon neutrality. Phase change latent heat stands out among various thermal storage methods due to the high </span>energy density<span> of phase change materials<span> (PCMs). PCMs possess unique characteristics such as tunable thermal storage or/and release processes, constant phase-transition temperatures, and changes in physical state. However, solid-liquid PCMs cannot be directly utilized due to the liquid leakage in their melted state. The encapsulation of PCM microcapsules (PCMMs) is essential for overcoming limitations and optimizing functionalities of the PCMs. Encapsulation strategies play a key role in considering factors like morphology, structure, physicochemical properties, and specific applications. Furthermore, PCMMs can expand their potential applications by incorporating functional nano-materials within their shells or introducing specific components into their cores during the synthesis process. This review examines various encapsulation strategies for PCMMs, including physical, physicochemical, and chemical methods. Various applications of PCMMs are summarized and analyzed with regards to the characteristics of PCMs in thermal storage, temperature control, and state transformation. Furthermore, the reinforcement strategies or/and design considerations of PCMMs are crucial for meeting specific requirements, such as conventional latent heat storage, thermal protection, and thermal-triggered intelligent materials. Finally, it discusses current challenges, proposed solutions, and future research directions in the field of PCMMs, particularly Janus particle modified PCMMs.</span></span></p></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124001485\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001485","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermal energy storage is crucial in the context of achieving carbon neutrality. Phase change latent heat stands out among various thermal storage methods due to the high energy density of phase change materials (PCMs). PCMs possess unique characteristics such as tunable thermal storage or/and release processes, constant phase-transition temperatures, and changes in physical state. However, solid-liquid PCMs cannot be directly utilized due to the liquid leakage in their melted state. The encapsulation of PCM microcapsules (PCMMs) is essential for overcoming limitations and optimizing functionalities of the PCMs. Encapsulation strategies play a key role in considering factors like morphology, structure, physicochemical properties, and specific applications. Furthermore, PCMMs can expand their potential applications by incorporating functional nano-materials within their shells or introducing specific components into their cores during the synthesis process. This review examines various encapsulation strategies for PCMMs, including physical, physicochemical, and chemical methods. Various applications of PCMMs are summarized and analyzed with regards to the characteristics of PCMs in thermal storage, temperature control, and state transformation. Furthermore, the reinforcement strategies or/and design considerations of PCMMs are crucial for meeting specific requirements, such as conventional latent heat storage, thermal protection, and thermal-triggered intelligent materials. Finally, it discusses current challenges, proposed solutions, and future research directions in the field of PCMMs, particularly Janus particle modified PCMMs.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.