{"title":"通过扫描探针显微镜和化学状态分析揭开炭黑表面的神秘面纱","authors":"Mari Isagoda , Yuto Ariyoshi , Yuto Fujita , Sae Endo , Takayuki Aoki , Rui Tang , Hirotomo Nishihara , Tomoko K. Shimizu","doi":"10.1016/j.cartre.2024.100378","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon black (CB) has wide range of industrial applications, including in the manufacturing of automobile tires, rubber products, inks, and plastics. To improve the properties of the target products and establish recycling systems, it must be fully characterized. However, characterization of CB is challenging owing to its structural complexity and the limitation of conventionally used experimental techniques, especially for surface structures at the nanoscale. In this study, we characterized the surface structures of two commercial CB via atomic force and scanning tunneling microscopy. Analysis of well-dispersed aggregates on atomically flat solid surfaces revealed primary particles of diverse sizes. The particle surfaces lacked edges, grooves, and steps that should be observed between stacked graphene sheets, which contradicts the widely accepted crystallite model. Observed images suggest that the graphene sheets exhibit a size distribution, inferring that multiple non-uniformly sized small graphene sheets are stacked turbostratically, with each sheet displaying a localized curvature rather than the ideal planar form. Varying size of sheets and curvature indicate the presence of a decent number of edges terminated with hydrogen and oxygen-containing functional groups. This interpretation was corroborated by conventional spectroscopic techniques: Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption, and infrared absorption spectroscopy.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000592/pdfft?md5=5dd28fb8c149c1be4d4ba84c60257bc5&pid=1-s2.0-S2667056924000592-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unveiling the surface of carbon black via scanning probe microscopy and chemical state analysis\",\"authors\":\"Mari Isagoda , Yuto Ariyoshi , Yuto Fujita , Sae Endo , Takayuki Aoki , Rui Tang , Hirotomo Nishihara , Tomoko K. Shimizu\",\"doi\":\"10.1016/j.cartre.2024.100378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon black (CB) has wide range of industrial applications, including in the manufacturing of automobile tires, rubber products, inks, and plastics. To improve the properties of the target products and establish recycling systems, it must be fully characterized. However, characterization of CB is challenging owing to its structural complexity and the limitation of conventionally used experimental techniques, especially for surface structures at the nanoscale. In this study, we characterized the surface structures of two commercial CB via atomic force and scanning tunneling microscopy. Analysis of well-dispersed aggregates on atomically flat solid surfaces revealed primary particles of diverse sizes. The particle surfaces lacked edges, grooves, and steps that should be observed between stacked graphene sheets, which contradicts the widely accepted crystallite model. Observed images suggest that the graphene sheets exhibit a size distribution, inferring that multiple non-uniformly sized small graphene sheets are stacked turbostratically, with each sheet displaying a localized curvature rather than the ideal planar form. Varying size of sheets and curvature indicate the presence of a decent number of edges terminated with hydrogen and oxygen-containing functional groups. This interpretation was corroborated by conventional spectroscopic techniques: Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption, and infrared absorption spectroscopy.</p></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000592/pdfft?md5=5dd28fb8c149c1be4d4ba84c60257bc5&pid=1-s2.0-S2667056924000592-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Unveiling the surface of carbon black via scanning probe microscopy and chemical state analysis
Carbon black (CB) has wide range of industrial applications, including in the manufacturing of automobile tires, rubber products, inks, and plastics. To improve the properties of the target products and establish recycling systems, it must be fully characterized. However, characterization of CB is challenging owing to its structural complexity and the limitation of conventionally used experimental techniques, especially for surface structures at the nanoscale. In this study, we characterized the surface structures of two commercial CB via atomic force and scanning tunneling microscopy. Analysis of well-dispersed aggregates on atomically flat solid surfaces revealed primary particles of diverse sizes. The particle surfaces lacked edges, grooves, and steps that should be observed between stacked graphene sheets, which contradicts the widely accepted crystallite model. Observed images suggest that the graphene sheets exhibit a size distribution, inferring that multiple non-uniformly sized small graphene sheets are stacked turbostratically, with each sheet displaying a localized curvature rather than the ideal planar form. Varying size of sheets and curvature indicate the presence of a decent number of edges terminated with hydrogen and oxygen-containing functional groups. This interpretation was corroborated by conventional spectroscopic techniques: Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption, and infrared absorption spectroscopy.