用非组合导航滤波器测试电离层模型延迟和不确定性估计值。

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
R. Orús-Perez , M.J. Angling , S. Vetra-Carvalho , F.-X. Bocquet , K. Nordström , S. Melville , D. Ibáñez , L. Duquerroy
{"title":"用非组合导航滤波器测试电离层模型延迟和不确定性估计值。","authors":"R. Orús-Perez ,&nbsp;M.J. Angling ,&nbsp;S. Vetra-Carvalho ,&nbsp;F.-X. Bocquet ,&nbsp;K. Nordström ,&nbsp;S. Melville ,&nbsp;D. Ibáñez ,&nbsp;L. Duquerroy","doi":"10.1016/j.jastp.2024.106299","DOIUrl":null,"url":null,"abstract":"<div><p>In the last decade, new algorithmic positioning techniques have been developed for Global Navigation Satellite Systems (GNSS). These have brought a new focus on high accuracy applications which do not combine multiple frequencies to remove ionospheric errors (i.e. PPP-RTK, Fast-PPP). Not only do these algorithms focus on improvements in the position domain but also in acquiring the positioning solution as fast as possible. In this work, capabilities of different global ionospheric models are assessed, analyzing both the Ionospheric delay accuracy and the associated model uncertainty. Accurate model uncertainties are crucial for reducing the convergence time in uncombined filters, and to guarantee unbiased convergence in the first place. The assessment is done using an uncombined navigation filter with different ionospheric models: GPS ICA, IGS vTEC (vertical Total Electron Content) maps (IGSG, CODG and UQRG), two realizations of the ESA-UGI (Voxel and Multi-Layer), the Madrigal TEC, and the Spire Global vTEC maps. To quantify the model uncertainties without the use of a reference ionospheric model, global maps of an uncertainty inflation factor are computed to show the inflation required to produce optimal filter convergence. These maps demonstrate that some models are too optimistic in the reporting of their own uncertainty estimates, requiring an uncertainty factor up to 10 times the quoted value.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"262 ","pages":"Article 106299"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the ionospheric model delay and uncertainty estimates with an uncombined navigation filter\",\"authors\":\"R. Orús-Perez ,&nbsp;M.J. Angling ,&nbsp;S. Vetra-Carvalho ,&nbsp;F.-X. Bocquet ,&nbsp;K. Nordström ,&nbsp;S. Melville ,&nbsp;D. Ibáñez ,&nbsp;L. Duquerroy\",\"doi\":\"10.1016/j.jastp.2024.106299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the last decade, new algorithmic positioning techniques have been developed for Global Navigation Satellite Systems (GNSS). These have brought a new focus on high accuracy applications which do not combine multiple frequencies to remove ionospheric errors (i.e. PPP-RTK, Fast-PPP). Not only do these algorithms focus on improvements in the position domain but also in acquiring the positioning solution as fast as possible. In this work, capabilities of different global ionospheric models are assessed, analyzing both the Ionospheric delay accuracy and the associated model uncertainty. Accurate model uncertainties are crucial for reducing the convergence time in uncombined filters, and to guarantee unbiased convergence in the first place. The assessment is done using an uncombined navigation filter with different ionospheric models: GPS ICA, IGS vTEC (vertical Total Electron Content) maps (IGSG, CODG and UQRG), two realizations of the ESA-UGI (Voxel and Multi-Layer), the Madrigal TEC, and the Spire Global vTEC maps. To quantify the model uncertainties without the use of a reference ionospheric model, global maps of an uncertainty inflation factor are computed to show the inflation required to produce optimal filter convergence. These maps demonstrate that some models are too optimistic in the reporting of their own uncertainty estimates, requiring an uncertainty factor up to 10 times the quoted value.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"262 \",\"pages\":\"Article 106299\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624001275\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001275","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

过去十年中,为全球导航卫星系统(GNSS)开发了新的算法定位技术。这些技术将新的重点放在高精度应用上,而不需要结合多个频率来消除电离层误差(即 PPP-RTK、Fast-PPP)。这些算法不仅关注位置域的改进,还关注尽可能快地获取定位解决方案。在这项工作中,对不同全球电离层模型的能力进行了评估,分析了电离层延迟精度和相关模型的不确定性。准确的模型不确定性对于缩短非组合滤波器的收敛时间以及首先保证无偏收敛至关重要。评估是使用不同电离层模型的非组合导航滤波器进行的:GPS ICA、IGS vTEC(垂直总电子含量)地图(IGSG、CODG 和 UQRG)、ESA-UGI 的两种实现方式(Voxel 和 Multi-Layer)、Madrigal TEC 和 Spire Global vTEC 地图。为了在不使用参考电离层模型的情况下量化模型的不确定性,计算了不确定性膨胀因子的全球地图,以显示产生最佳滤波器收敛所需的膨胀。这些地图表明,一些模型在报告其自身的不确定性估计时过于乐观,所需的不确定性系数高达所报数值的 10 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing the ionospheric model delay and uncertainty estimates with an uncombined navigation filter

In the last decade, new algorithmic positioning techniques have been developed for Global Navigation Satellite Systems (GNSS). These have brought a new focus on high accuracy applications which do not combine multiple frequencies to remove ionospheric errors (i.e. PPP-RTK, Fast-PPP). Not only do these algorithms focus on improvements in the position domain but also in acquiring the positioning solution as fast as possible. In this work, capabilities of different global ionospheric models are assessed, analyzing both the Ionospheric delay accuracy and the associated model uncertainty. Accurate model uncertainties are crucial for reducing the convergence time in uncombined filters, and to guarantee unbiased convergence in the first place. The assessment is done using an uncombined navigation filter with different ionospheric models: GPS ICA, IGS vTEC (vertical Total Electron Content) maps (IGSG, CODG and UQRG), two realizations of the ESA-UGI (Voxel and Multi-Layer), the Madrigal TEC, and the Spire Global vTEC maps. To quantify the model uncertainties without the use of a reference ionospheric model, global maps of an uncertainty inflation factor are computed to show the inflation required to produce optimal filter convergence. These maps demonstrate that some models are too optimistic in the reporting of their own uncertainty estimates, requiring an uncertainty factor up to 10 times the quoted value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信