基于固定时间自适应神经网络的工作空间机械手轨迹跟踪控制

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Actuators Pub Date : 2024-07-01 DOI:10.3390/act13070252
Xiaofei Chen, Han Zhao, Shengchao Zhen, Xiaoxiao Liu, Jinsi Zhang
{"title":"基于固定时间自适应神经网络的工作空间机械手轨迹跟踪控制","authors":"Xiaofei Chen, Han Zhao, Shengchao Zhen, Xiaoxiao Liu, Jinsi Zhang","doi":"10.3390/act13070252","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel neural network-based control algorithm with fixed-time performance constraints for manipulator systems in workspaces. The algorithm efficiently controls the manipulator’s trajectory tracking by tuning a preset performance function, thereby optimizing both speed and accuracy within a fixed timeframe. Initially, a tangent-type error transformation, applied through homogeneous embryonic transformation, ensures rapid convergence of tracking errors to a specific region. Subsequently, integrating a predetermined control strategy into the fixed-time stability framework ensures the system’s state reaches a defined boundary within a finite period. Lastly, neural networks are employed to approximate dynamic parameters and adjust the controller, achieving optimal parameter approximation and significantly enhancing trajectory tracking robustness. Simulation analyses and comparisons confirm the controller’s effectiveness and superiority in enhancing both the transient and steady-state performance of the control system.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed-Time Adaptive Neural Network-Based Trajectory Tracking Control for Workspace Manipulators\",\"authors\":\"Xiaofei Chen, Han Zhao, Shengchao Zhen, Xiaoxiao Liu, Jinsi Zhang\",\"doi\":\"10.3390/act13070252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel neural network-based control algorithm with fixed-time performance constraints for manipulator systems in workspaces. The algorithm efficiently controls the manipulator’s trajectory tracking by tuning a preset performance function, thereby optimizing both speed and accuracy within a fixed timeframe. Initially, a tangent-type error transformation, applied through homogeneous embryonic transformation, ensures rapid convergence of tracking errors to a specific region. Subsequently, integrating a predetermined control strategy into the fixed-time stability framework ensures the system’s state reaches a defined boundary within a finite period. Lastly, neural networks are employed to approximate dynamic parameters and adjust the controller, achieving optimal parameter approximation and significantly enhancing trajectory tracking robustness. Simulation analyses and comparisons confirm the controller’s effectiveness and superiority in enhancing both the transient and steady-state performance of the control system.\",\"PeriodicalId\":48584,\"journal\":{\"name\":\"Actuators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actuators\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/act13070252\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act13070252","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文针对工作空间中的机械手系统,提出了一种基于神经网络、具有固定时间性能约束的新型控制算法。该算法通过调整预设的性能函数来有效控制机械手的轨迹跟踪,从而在固定时间范围内优化速度和精度。最初,通过同质胚胎变换应用切线型误差变换,确保跟踪误差快速收敛到特定区域。随后,将预先确定的控制策略整合到固定时间稳定性框架中,确保系统状态在有限时间内达到确定的边界。最后,采用神经网络来近似动态参数并调整控制器,从而实现最佳参数近似,并显著增强轨迹跟踪的鲁棒性。仿真分析和比较证实了控制器在提高控制系统瞬态和稳态性能方面的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-Time Adaptive Neural Network-Based Trajectory Tracking Control for Workspace Manipulators
This paper proposes a novel neural network-based control algorithm with fixed-time performance constraints for manipulator systems in workspaces. The algorithm efficiently controls the manipulator’s trajectory tracking by tuning a preset performance function, thereby optimizing both speed and accuracy within a fixed timeframe. Initially, a tangent-type error transformation, applied through homogeneous embryonic transformation, ensures rapid convergence of tracking errors to a specific region. Subsequently, integrating a predetermined control strategy into the fixed-time stability framework ensures the system’s state reaches a defined boundary within a finite period. Lastly, neural networks are employed to approximate dynamic parameters and adjust the controller, achieving optimal parameter approximation and significantly enhancing trajectory tracking robustness. Simulation analyses and comparisons confirm the controller’s effectiveness and superiority in enhancing both the transient and steady-state performance of the control system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信