Firman Ridwan , Dandi Agusta , Muhammad Akbar Husin , Dahyunir Dahlan
{"title":"评估在 PVA/TEOS/HCl 凝胶电解液中添加水泥灰对铝空气电池性能的影响","authors":"Firman Ridwan , Dandi Agusta , Muhammad Akbar Husin , Dahyunir Dahlan","doi":"10.1016/j.mset.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Cement manufacturing presents substantial environmental challenges due to the volume of waste generated, including cement ash. Therefore, it is crucial to discover novel methods to utilize cement waste effectively. This study aimed to examine the impact of different concentrations of cement ash (1, 1.5, 2, and 2.5 g) on the conductivity of PVA/TEOS/HCl (PTH) gel electrolyte materials. The primary goal was to determine the ideal concentration of cement ash that would yield maximum conductivity. The research findings demonstrated that the PTH2.5CA sample attained the greatest conductivity of 2.78 mS/cm when adding 2.5 g of cement ash. In addition, this material exhibits a capacity of 0.354 mAh, a specific capacity of 0.12826 mAh/g, and a density capacity of 0.11813 mAh/cm<sup>2</sup>. The power and power densities were measured as 6.48 mW/cm<sup>2</sup> and 25.94 mW, respectively. These findings offer promising prospects for implementing sustainable practices in the industry and highlight the viability of utilizing cement waste as a significant element in battery membrane materials. This technique addresses environmental issues related to cement waste and contributes to advancing a more eco-friendly waste management system.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 24-31"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000132/pdfft?md5=7730edd5e95b308bd1147aa4fa41f411&pid=1-s2.0-S2589299124000132-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the addition of cement ash to the PVA/TEOS/HCl gel electrolyte on the performance of aluminium air batteries\",\"authors\":\"Firman Ridwan , Dandi Agusta , Muhammad Akbar Husin , Dahyunir Dahlan\",\"doi\":\"10.1016/j.mset.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cement manufacturing presents substantial environmental challenges due to the volume of waste generated, including cement ash. Therefore, it is crucial to discover novel methods to utilize cement waste effectively. This study aimed to examine the impact of different concentrations of cement ash (1, 1.5, 2, and 2.5 g) on the conductivity of PVA/TEOS/HCl (PTH) gel electrolyte materials. The primary goal was to determine the ideal concentration of cement ash that would yield maximum conductivity. The research findings demonstrated that the PTH2.5CA sample attained the greatest conductivity of 2.78 mS/cm when adding 2.5 g of cement ash. In addition, this material exhibits a capacity of 0.354 mAh, a specific capacity of 0.12826 mAh/g, and a density capacity of 0.11813 mAh/cm<sup>2</sup>. The power and power densities were measured as 6.48 mW/cm<sup>2</sup> and 25.94 mW, respectively. These findings offer promising prospects for implementing sustainable practices in the industry and highlight the viability of utilizing cement waste as a significant element in battery membrane materials. This technique addresses environmental issues related to cement waste and contributes to advancing a more eco-friendly waste management system.</p></div>\",\"PeriodicalId\":18283,\"journal\":{\"name\":\"Materials Science for Energy Technologies\",\"volume\":\"8 \",\"pages\":\"Pages 24-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589299124000132/pdfft?md5=7730edd5e95b308bd1147aa4fa41f411&pid=1-s2.0-S2589299124000132-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science for Energy Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589299124000132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299124000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Evaluation of the addition of cement ash to the PVA/TEOS/HCl gel electrolyte on the performance of aluminium air batteries
Cement manufacturing presents substantial environmental challenges due to the volume of waste generated, including cement ash. Therefore, it is crucial to discover novel methods to utilize cement waste effectively. This study aimed to examine the impact of different concentrations of cement ash (1, 1.5, 2, and 2.5 g) on the conductivity of PVA/TEOS/HCl (PTH) gel electrolyte materials. The primary goal was to determine the ideal concentration of cement ash that would yield maximum conductivity. The research findings demonstrated that the PTH2.5CA sample attained the greatest conductivity of 2.78 mS/cm when adding 2.5 g of cement ash. In addition, this material exhibits a capacity of 0.354 mAh, a specific capacity of 0.12826 mAh/g, and a density capacity of 0.11813 mAh/cm2. The power and power densities were measured as 6.48 mW/cm2 and 25.94 mW, respectively. These findings offer promising prospects for implementing sustainable practices in the industry and highlight the viability of utilizing cement waste as a significant element in battery membrane materials. This technique addresses environmental issues related to cement waste and contributes to advancing a more eco-friendly waste management system.