Yuan Kang , Kou-Qi Liu , Ru-Kai Zhu , Ge-Ge Yin , Jing-Ya Zhang , Su-Rong Zhang
{"title":"超压作用下粘土矿物的演化及其对碳氢化合物的指示作用:以古龙沙格青山口组页岩为例","authors":"Yuan Kang , Kou-Qi Liu , Ru-Kai Zhu , Ge-Ge Yin , Jing-Ya Zhang , Su-Rong Zhang","doi":"10.1016/j.petsci.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><div>The enrichment and development of shale oil are significantly influenced by the evolution of clay minerals. In this paper, the mineralogy and clay mineral crystallinity of shale samples from Wells X1, X2 and X3 in the Gulong Sag are characterized by X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FE-SEM). Geochemical parameters, including total organic carbon (TOC) and rock-eval pyrolysis, were also evaluated. The results reveal that illite in the shale primarily exists in the matrix, originating mainly from the transformation of smectite and I/S mixed layer. Chlorite in pores is predominantly formed through fluid precipitation and crystallization. The study area exhibits abnormal evolution of illite and I/S mixed layers, as well as the phenomenon of rapid chlorite growth under overpressure condition. The abnormal evolution of illite and I/S mixed layer may attribute to the inhibition of the conversion reaction from I/S mixed layer to illite. Chlorite's rapid growth occurs through the nucleation mechanism. Furthermore, through the analysis of clay and organic matter correlation, coupled with overpressure and hydrocarbon-rich section considerations, it is observed that chlorite may play a significant role in the storage and generation of S<sub>1</sub>. This study contributes to a better understanding of the relationship between clay mineral evolution and shale reservoir overpressure, offering valuable insights for the accurate assessment of shale oil.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"21 6","pages":"Pages 3867-3883"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The evolution of clay mineral and its indication of hydrocarbons under overpressure: An example from the shale of the Qingshankou formation in the Gulong Sag\",\"authors\":\"Yuan Kang , Kou-Qi Liu , Ru-Kai Zhu , Ge-Ge Yin , Jing-Ya Zhang , Su-Rong Zhang\",\"doi\":\"10.1016/j.petsci.2024.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The enrichment and development of shale oil are significantly influenced by the evolution of clay minerals. In this paper, the mineralogy and clay mineral crystallinity of shale samples from Wells X1, X2 and X3 in the Gulong Sag are characterized by X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FE-SEM). Geochemical parameters, including total organic carbon (TOC) and rock-eval pyrolysis, were also evaluated. The results reveal that illite in the shale primarily exists in the matrix, originating mainly from the transformation of smectite and I/S mixed layer. Chlorite in pores is predominantly formed through fluid precipitation and crystallization. The study area exhibits abnormal evolution of illite and I/S mixed layers, as well as the phenomenon of rapid chlorite growth under overpressure condition. The abnormal evolution of illite and I/S mixed layer may attribute to the inhibition of the conversion reaction from I/S mixed layer to illite. Chlorite's rapid growth occurs through the nucleation mechanism. Furthermore, through the analysis of clay and organic matter correlation, coupled with overpressure and hydrocarbon-rich section considerations, it is observed that chlorite may play a significant role in the storage and generation of S<sub>1</sub>. This study contributes to a better understanding of the relationship between clay mineral evolution and shale reservoir overpressure, offering valuable insights for the accurate assessment of shale oil.</div></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":\"21 6\",\"pages\":\"Pages 3867-3883\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995822624001912\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624001912","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
The evolution of clay mineral and its indication of hydrocarbons under overpressure: An example from the shale of the Qingshankou formation in the Gulong Sag
The enrichment and development of shale oil are significantly influenced by the evolution of clay minerals. In this paper, the mineralogy and clay mineral crystallinity of shale samples from Wells X1, X2 and X3 in the Gulong Sag are characterized by X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FE-SEM). Geochemical parameters, including total organic carbon (TOC) and rock-eval pyrolysis, were also evaluated. The results reveal that illite in the shale primarily exists in the matrix, originating mainly from the transformation of smectite and I/S mixed layer. Chlorite in pores is predominantly formed through fluid precipitation and crystallization. The study area exhibits abnormal evolution of illite and I/S mixed layers, as well as the phenomenon of rapid chlorite growth under overpressure condition. The abnormal evolution of illite and I/S mixed layer may attribute to the inhibition of the conversion reaction from I/S mixed layer to illite. Chlorite's rapid growth occurs through the nucleation mechanism. Furthermore, through the analysis of clay and organic matter correlation, coupled with overpressure and hydrocarbon-rich section considerations, it is observed that chlorite may play a significant role in the storage and generation of S1. This study contributes to a better understanding of the relationship between clay mineral evolution and shale reservoir overpressure, offering valuable insights for the accurate assessment of shale oil.
期刊介绍:
Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.