全景质量对齐的更清晰定义

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ruben van Heusden, Maarten Marx
{"title":"全景质量对齐的更清晰定义","authors":"Ruben van Heusden,&nbsp;Maarten Marx","doi":"10.1016/j.patrec.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>The Panoptic Quality metric, developed by Kirillov et al. in 2019, makes object-level precision, recall and F1 measures available for evaluating image segmentation, and more generally any partitioning task, against a gold standard. Panoptic Quality is based on partial isomorphisms between hypothesized and true segmentations. Kirillov et al. desire that functions defining these one-to-one matchings should be simple, interpretable and effectively computable. They show that for <span><math><mi>t</mi></math></span> and <span><math><mi>h</mi></math></span>, true and hypothesized segments, the condition stating that there are more correct than wrongly predicted pixels, formalized as <span><math><mrow><mi>I</mi><mi>o</mi><mi>U</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>h</mi><mo>)</mo></mrow><mo>&gt;</mo><mo>.</mo><mn>5</mn></mrow></math></span> or equivalently as <span><math><mrow><mo>|</mo><mi>t</mi><mo>∩</mo><mi>h</mi><mo>|</mo><mo>&gt;</mo><mo>.</mo><mn>5</mn><mo>|</mo><mi>t</mi><mo>∪</mo><mi>h</mi><mo>|</mo></mrow></math></span> has these properties. We show that a weaker function, requiring that more than half of the pixels in the hypothesized segment are in the true segment and vice-versa, formalized as <span><math><mrow><mo>|</mo><mi>t</mi><mo>∩</mo><mi>h</mi><mo>|</mo><mo>&gt;</mo><mo>.</mo><mn>5</mn><mo>|</mo><mi>t</mi><mo>|</mo></mrow></math></span> and <span><math><mrow><mo>|</mo><mi>t</mi><mo>∩</mo><mi>h</mi><mo>|</mo><mo>&gt;</mo><mo>.</mo><mn>5</mn><mo>|</mo><mi>h</mi><mo>|</mo></mrow></math></span>, is not only sufficient but also necessary. With a small proviso, every function defining a partial isomorphism satisfies this condition. We theoretically and empirically compare the two conditions.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 87-93"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167865524002083/pdfft?md5=bb6442127be088116923de392456ce0d&pid=1-s2.0-S0167865524002083-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A sharper definition of alignment for Panoptic Quality\",\"authors\":\"Ruben van Heusden,&nbsp;Maarten Marx\",\"doi\":\"10.1016/j.patrec.2024.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Panoptic Quality metric, developed by Kirillov et al. in 2019, makes object-level precision, recall and F1 measures available for evaluating image segmentation, and more generally any partitioning task, against a gold standard. Panoptic Quality is based on partial isomorphisms between hypothesized and true segmentations. Kirillov et al. desire that functions defining these one-to-one matchings should be simple, interpretable and effectively computable. They show that for <span><math><mi>t</mi></math></span> and <span><math><mi>h</mi></math></span>, true and hypothesized segments, the condition stating that there are more correct than wrongly predicted pixels, formalized as <span><math><mrow><mi>I</mi><mi>o</mi><mi>U</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>h</mi><mo>)</mo></mrow><mo>&gt;</mo><mo>.</mo><mn>5</mn></mrow></math></span> or equivalently as <span><math><mrow><mo>|</mo><mi>t</mi><mo>∩</mo><mi>h</mi><mo>|</mo><mo>&gt;</mo><mo>.</mo><mn>5</mn><mo>|</mo><mi>t</mi><mo>∪</mo><mi>h</mi><mo>|</mo></mrow></math></span> has these properties. We show that a weaker function, requiring that more than half of the pixels in the hypothesized segment are in the true segment and vice-versa, formalized as <span><math><mrow><mo>|</mo><mi>t</mi><mo>∩</mo><mi>h</mi><mo>|</mo><mo>&gt;</mo><mo>.</mo><mn>5</mn><mo>|</mo><mi>t</mi><mo>|</mo></mrow></math></span> and <span><math><mrow><mo>|</mo><mi>t</mi><mo>∩</mo><mi>h</mi><mo>|</mo><mo>&gt;</mo><mo>.</mo><mn>5</mn><mo>|</mo><mi>h</mi><mo>|</mo></mrow></math></span>, is not only sufficient but also necessary. With a small proviso, every function defining a partial isomorphism satisfies this condition. We theoretically and empirically compare the two conditions.</p></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"185 \",\"pages\":\"Pages 87-93\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002083/pdfft?md5=bb6442127be088116923de392456ce0d&pid=1-s2.0-S0167865524002083-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002083\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002083","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

Kirillov 等人于 2019 年开发了 Panoptic Quality 指标,该指标提供了对象级精度、召回率和 F1 度量,用于对照黄金标准评估图像分割,以及更广泛的任何分割任务。Panoptic Quality 基于假设分割与真实分割之间的部分同构。Kirillov 等人希望定义这些一对一匹配的函数应该简单、可解释且可有效计算。他们证明,对于 t 和 h(真实分割和假设分割),说明正确预测像素多于错误预测像素的条件(形式化为 IoU(t,h)>.5,或等价为 |t∩h|>.5|t∪h|)具有这些特性。我们证明了一个较弱的函数,即要求假设区段中一半以上的像素在真实区段中,反之亦然,形式化为|t∩h|>.5|t|和|t∩h|>.5|h|,不仅是充分的,而且是必要的。只要有一个小条件,定义部分同构的每个函数都满足这个条件。我们从理论和经验上比较了这两个条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sharper definition of alignment for Panoptic Quality

The Panoptic Quality metric, developed by Kirillov et al. in 2019, makes object-level precision, recall and F1 measures available for evaluating image segmentation, and more generally any partitioning task, against a gold standard. Panoptic Quality is based on partial isomorphisms between hypothesized and true segmentations. Kirillov et al. desire that functions defining these one-to-one matchings should be simple, interpretable and effectively computable. They show that for t and h, true and hypothesized segments, the condition stating that there are more correct than wrongly predicted pixels, formalized as IoU(t,h)>.5 or equivalently as |th|>.5|th| has these properties. We show that a weaker function, requiring that more than half of the pixels in the hypothesized segment are in the true segment and vice-versa, formalized as |th|>.5|t| and |th|>.5|h|, is not only sufficient but also necessary. With a small proviso, every function defining a partial isomorphism satisfies this condition. We theoretically and empirically compare the two conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信