Hong Shi, Rui Wang, Yi Xiao, Xiaojian Zhu, Rentong Zheng, Caiyue Song, Zhenrong Liu
{"title":"优化船用燃气轮机带叶形喷嘴的排气喷射器","authors":"Hong Shi, Rui Wang, Yi Xiao, Xiaojian Zhu, Rentong Zheng, Caiyue Song, Zhenrong Liu","doi":"10.21278/brod75303","DOIUrl":null,"url":null,"abstract":"To attain high-performance ejector configurations, an ejection characteristic testing system was established initially to validate the reliability of the Realizable k-ε turbulent model. Subsequently, optimization investigations were conducted on lobed nozzle ejectors with various structural parameters. The effects of four key structural parameters, including lobed nozzle expansion angle α, lobed nozzle width d, number of lobes in the nozzle n, and height of the square-to-circle section h, were systematically studied. Furthermore, the CRITIC method was employed for multi-objective evaluation to identify the optimal design configuration for the casing ejector. The research findings revealed that among the structural parameters, the lobed nozzle expansion angle α exerted the greatest influence on the ejection coefficient and pressure loss coefficient. The weights of the evaluation criteria were determined by the CRITIC method as follows: ejection coefficient (49.38%) < pressure loss coefficient (50.62%). The optimal design configuration determined by the CRITIC method included α = 45°, d = 150 mm, n = 14, and h = 600 mm. The resulting enclosure design ensures smooth airflow within the system, preventing the backflow of high-temperature mainstream fluid and heating the enclosure. It also maintains a temperature distribution in the typical cross-section that meets specified requirements. Additionally, it facilitates improved mixing of mainstream and secondary fluid and reduces exhaust gas temperature.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"45 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of exhaust ejector with lobed nozzle for marine gas turbine\",\"authors\":\"Hong Shi, Rui Wang, Yi Xiao, Xiaojian Zhu, Rentong Zheng, Caiyue Song, Zhenrong Liu\",\"doi\":\"10.21278/brod75303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To attain high-performance ejector configurations, an ejection characteristic testing system was established initially to validate the reliability of the Realizable k-ε turbulent model. Subsequently, optimization investigations were conducted on lobed nozzle ejectors with various structural parameters. The effects of four key structural parameters, including lobed nozzle expansion angle α, lobed nozzle width d, number of lobes in the nozzle n, and height of the square-to-circle section h, were systematically studied. Furthermore, the CRITIC method was employed for multi-objective evaluation to identify the optimal design configuration for the casing ejector. The research findings revealed that among the structural parameters, the lobed nozzle expansion angle α exerted the greatest influence on the ejection coefficient and pressure loss coefficient. The weights of the evaluation criteria were determined by the CRITIC method as follows: ejection coefficient (49.38%) < pressure loss coefficient (50.62%). The optimal design configuration determined by the CRITIC method included α = 45°, d = 150 mm, n = 14, and h = 600 mm. The resulting enclosure design ensures smooth airflow within the system, preventing the backflow of high-temperature mainstream fluid and heating the enclosure. It also maintains a temperature distribution in the typical cross-section that meets specified requirements. Additionally, it facilitates improved mixing of mainstream and secondary fluid and reduces exhaust gas temperature.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"45 2\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod75303\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod75303","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimization of exhaust ejector with lobed nozzle for marine gas turbine
To attain high-performance ejector configurations, an ejection characteristic testing system was established initially to validate the reliability of the Realizable k-ε turbulent model. Subsequently, optimization investigations were conducted on lobed nozzle ejectors with various structural parameters. The effects of four key structural parameters, including lobed nozzle expansion angle α, lobed nozzle width d, number of lobes in the nozzle n, and height of the square-to-circle section h, were systematically studied. Furthermore, the CRITIC method was employed for multi-objective evaluation to identify the optimal design configuration for the casing ejector. The research findings revealed that among the structural parameters, the lobed nozzle expansion angle α exerted the greatest influence on the ejection coefficient and pressure loss coefficient. The weights of the evaluation criteria were determined by the CRITIC method as follows: ejection coefficient (49.38%) < pressure loss coefficient (50.62%). The optimal design configuration determined by the CRITIC method included α = 45°, d = 150 mm, n = 14, and h = 600 mm. The resulting enclosure design ensures smooth airflow within the system, preventing the backflow of high-temperature mainstream fluid and heating the enclosure. It also maintains a temperature distribution in the typical cross-section that meets specified requirements. Additionally, it facilitates improved mixing of mainstream and secondary fluid and reduces exhaust gas temperature.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico