Melanie M. Marshall, Stephen J. Jacquemin, Aubrey L. Jaqueth
{"title":"用于养分径流溯源研究的有机废物中无机磷的同位素差异(δ18OPO4):大圣玛丽斯湖流域(俄亥俄州)的文献综述及牲畜估计值的改进","authors":"Melanie M. Marshall, Stephen J. Jacquemin, Aubrey L. Jaqueth","doi":"10.3390/pollutants4030021","DOIUrl":null,"url":null,"abstract":"The use of stable isotopes, specifically δ18OPO4 ratios, in differentiating potential sources of inorganic phosphorus (e.g., wastewater, septic, wild animals, domesticated animals, livestock, substrates, or commercial fertilizers) to watersheds is a growing field. This method produces data that, used in conjunction with statistical mixing models, enables a better understanding of contributing sources of runoff. However, given the recent development of this research area there are obvious limitations that have arisen, due in large part to the limited available reference data to compare water samples. Here, we attempt to expand the availability of reference samples by applying stable isotope methods to three types of common agricultural manures: poultry, dairy, and swine. We also aim to concatenate the organic waste literature on this topic, creating a more robust comparison database for future study and application in phosphorus source partitioning research. Among our samples, δ18OPO4 ratios for poultry were considerably elevated compared to dairy and swine manures (values of 18.5‰, 16.5‰, and 17.9‰, respectively). Extending this to other published ratios of δ18OPO4 from various types of waste products (e.g., septic, wastewater, livestock, other animals), a total range from 8.7‰ to 23.1‰ emerged (with existing poultry manure samples also ranking among the highest overall). Variation among samples in the larger dataset demonstrates the need for a further compilation of δ18OPO4 ratios for various types of waste, especially specific to geographic regions and watershed scales. With an increased sample size, the statistical strength associated with these methods would greatly improve.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isotopic Differentiation (δ18OPO4) of Inorganic Phosphorus among Organic Wastes for Nutrient Runoff Tracing Studies: A Summary of the Literature with Refinement of Livestock Estimates for Grand Lake St. Marys Watershed (Ohio)\",\"authors\":\"Melanie M. Marshall, Stephen J. Jacquemin, Aubrey L. Jaqueth\",\"doi\":\"10.3390/pollutants4030021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of stable isotopes, specifically δ18OPO4 ratios, in differentiating potential sources of inorganic phosphorus (e.g., wastewater, septic, wild animals, domesticated animals, livestock, substrates, or commercial fertilizers) to watersheds is a growing field. This method produces data that, used in conjunction with statistical mixing models, enables a better understanding of contributing sources of runoff. However, given the recent development of this research area there are obvious limitations that have arisen, due in large part to the limited available reference data to compare water samples. Here, we attempt to expand the availability of reference samples by applying stable isotope methods to three types of common agricultural manures: poultry, dairy, and swine. We also aim to concatenate the organic waste literature on this topic, creating a more robust comparison database for future study and application in phosphorus source partitioning research. Among our samples, δ18OPO4 ratios for poultry were considerably elevated compared to dairy and swine manures (values of 18.5‰, 16.5‰, and 17.9‰, respectively). Extending this to other published ratios of δ18OPO4 from various types of waste products (e.g., septic, wastewater, livestock, other animals), a total range from 8.7‰ to 23.1‰ emerged (with existing poultry manure samples also ranking among the highest overall). Variation among samples in the larger dataset demonstrates the need for a further compilation of δ18OPO4 ratios for various types of waste, especially specific to geographic regions and watershed scales. With an increased sample size, the statistical strength associated with these methods would greatly improve.\",\"PeriodicalId\":20301,\"journal\":{\"name\":\"Pollutants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pollutants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/pollutants4030021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollutants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pollutants4030021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Isotopic Differentiation (δ18OPO4) of Inorganic Phosphorus among Organic Wastes for Nutrient Runoff Tracing Studies: A Summary of the Literature with Refinement of Livestock Estimates for Grand Lake St. Marys Watershed (Ohio)
The use of stable isotopes, specifically δ18OPO4 ratios, in differentiating potential sources of inorganic phosphorus (e.g., wastewater, septic, wild animals, domesticated animals, livestock, substrates, or commercial fertilizers) to watersheds is a growing field. This method produces data that, used in conjunction with statistical mixing models, enables a better understanding of contributing sources of runoff. However, given the recent development of this research area there are obvious limitations that have arisen, due in large part to the limited available reference data to compare water samples. Here, we attempt to expand the availability of reference samples by applying stable isotope methods to three types of common agricultural manures: poultry, dairy, and swine. We also aim to concatenate the organic waste literature on this topic, creating a more robust comparison database for future study and application in phosphorus source partitioning research. Among our samples, δ18OPO4 ratios for poultry were considerably elevated compared to dairy and swine manures (values of 18.5‰, 16.5‰, and 17.9‰, respectively). Extending this to other published ratios of δ18OPO4 from various types of waste products (e.g., septic, wastewater, livestock, other animals), a total range from 8.7‰ to 23.1‰ emerged (with existing poultry manure samples also ranking among the highest overall). Variation among samples in the larger dataset demonstrates the need for a further compilation of δ18OPO4 ratios for various types of waste, especially specific to geographic regions and watershed scales. With an increased sample size, the statistical strength associated with these methods would greatly improve.