{"title":"氧化铝和长石牙科材料在酸性环境中的电化学反应和表面降解分析:体外综合研究","authors":"Soraya Lakhloufi , Najoua Labjar , Houda Labjar , Abdelouahed Dahrouch , Souad El Hajjaji","doi":"10.1016/j.oceram.2024.100643","DOIUrl":null,"url":null,"abstract":"<div><p>This in vitro study examines the electrochemical responses and surface degradation of alumina and feldspar dental ceramic materials in acidic environments using cyclic polarization and electrochemical impedance spectroscopy (EIS). Alumina and feldspar demonstrate balanced responses in both Fusayama Artificial Saliva and acidic solutions, indicating effective passivation. SEM/EDX analyses after 168-h immersion reveal significant elemental variations, suggesting complex surface phenomena and chemical reactions leading to oxide layer formation. Alumina exhibits increased Si, O, Al, Na, K, and C counts, while feldspar shows increased Si, O, Al, Na with reduced C and Ca levels, indicating complex reactions. Immersion induces notable elemental composition modifications, with alumina showing remarkable corrosion resistance and feldspar undergoing selective dissolution. This study provides insights into the electrochemical and surface degradation of these materials, emphasizing long-term stability and the need for continuous monitoring of protective layer dynamics in future research on corrosion-resistant dental biomaterials.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100643"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266653952400107X/pdfft?md5=ae48e2c25ed8da97e0a6032b3135ecba&pid=1-s2.0-S266653952400107X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrochemical responses and surface degradation analyses alumina and feldspar dental materials in acidic environments: A comprehensive in vitro study\",\"authors\":\"Soraya Lakhloufi , Najoua Labjar , Houda Labjar , Abdelouahed Dahrouch , Souad El Hajjaji\",\"doi\":\"10.1016/j.oceram.2024.100643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This in vitro study examines the electrochemical responses and surface degradation of alumina and feldspar dental ceramic materials in acidic environments using cyclic polarization and electrochemical impedance spectroscopy (EIS). Alumina and feldspar demonstrate balanced responses in both Fusayama Artificial Saliva and acidic solutions, indicating effective passivation. SEM/EDX analyses after 168-h immersion reveal significant elemental variations, suggesting complex surface phenomena and chemical reactions leading to oxide layer formation. Alumina exhibits increased Si, O, Al, Na, K, and C counts, while feldspar shows increased Si, O, Al, Na with reduced C and Ca levels, indicating complex reactions. Immersion induces notable elemental composition modifications, with alumina showing remarkable corrosion resistance and feldspar undergoing selective dissolution. This study provides insights into the electrochemical and surface degradation of these materials, emphasizing long-term stability and the need for continuous monitoring of protective layer dynamics in future research on corrosion-resistant dental biomaterials.</p></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"19 \",\"pages\":\"Article 100643\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266653952400107X/pdfft?md5=ae48e2c25ed8da97e0a6032b3135ecba&pid=1-s2.0-S266653952400107X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266653952400107X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266653952400107X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
这项体外研究采用循环极化和电化学阻抗谱(EIS)技术,考察了氧化铝和长石牙科陶瓷材料在酸性环境中的电化学反应和表面降解情况。氧化铝和长石在 Fusayama 人工唾液和酸性溶液中都表现出平衡的反应,表明它们得到了有效的钝化。浸泡 168 小时后进行的 SEM/EDX 分析显示出显著的元素变化,表明氧化层形成的表面现象和化学反应十分复杂。氧化铝的 Si、O、Al、Na、K 和 C 含量增加,而长石的 Si、O、Al、Na 含量增加,C 和 Ca 含量减少,表明发生了复杂的反应。浸泡会引起明显的元素组成变化,氧化铝表现出显著的耐腐蚀性,而长石则会发生选择性溶解。这项研究深入揭示了这些材料的电化学和表面降解过程,强调了其长期稳定性以及在未来耐腐蚀牙科生物材料研究中持续监测保护层动态的必要性。
Electrochemical responses and surface degradation analyses alumina and feldspar dental materials in acidic environments: A comprehensive in vitro study
This in vitro study examines the electrochemical responses and surface degradation of alumina and feldspar dental ceramic materials in acidic environments using cyclic polarization and electrochemical impedance spectroscopy (EIS). Alumina and feldspar demonstrate balanced responses in both Fusayama Artificial Saliva and acidic solutions, indicating effective passivation. SEM/EDX analyses after 168-h immersion reveal significant elemental variations, suggesting complex surface phenomena and chemical reactions leading to oxide layer formation. Alumina exhibits increased Si, O, Al, Na, K, and C counts, while feldspar shows increased Si, O, Al, Na with reduced C and Ca levels, indicating complex reactions. Immersion induces notable elemental composition modifications, with alumina showing remarkable corrosion resistance and feldspar undergoing selective dissolution. This study provides insights into the electrochemical and surface degradation of these materials, emphasizing long-term stability and the need for continuous monitoring of protective layer dynamics in future research on corrosion-resistant dental biomaterials.