{"title":"P2 上的射影束与 <mml:math> 中的有理超曲面之间的对应关系","authors":"Shivam Vats","doi":"10.1016/j.bulsci.2024.103469","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>E</em> be the restriction of the null-correlation bundle on <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> to a hyperplane. In this article, we show that the projective bundle <span><math><mi>P</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> is isomorphic to a blow-up of a non-singular quadric in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> along a line. We also prove that for each <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, there are hypersurfaces of degree <em>d</em> containing a line in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> whose blow-up along the line is isomorphic to the projective bundle over <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103469"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correspondence between projective bundles over P2 and rational hypersurfaces in P4\",\"authors\":\"Shivam Vats\",\"doi\":\"10.1016/j.bulsci.2024.103469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>E</em> be the restriction of the null-correlation bundle on <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> to a hyperplane. In this article, we show that the projective bundle <span><math><mi>P</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> is isomorphic to a blow-up of a non-singular quadric in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> along a line. We also prove that for each <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, there are hypersurfaces of degree <em>d</em> containing a line in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> whose blow-up along the line is isomorphic to the projective bundle over <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"195 \",\"pages\":\"Article 103469\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724000873\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724000873","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
设 E 是 P3 上空相关束对超平面的限制。在本文中,我们证明了投影束 P(E) 与 P4 中沿直线的非星形二次方的吹胀同构。我们还证明,对于每个 d≥2,都存在包含 P4 中一条直线的 d 度超曲面,其沿该直线的炸开与 P2 上的投影束同构。
Correspondence between projective bundles over P2 and rational hypersurfaces in P4
Let E be the restriction of the null-correlation bundle on to a hyperplane. In this article, we show that the projective bundle is isomorphic to a blow-up of a non-singular quadric in along a line. We also prove that for each , there are hypersurfaces of degree d containing a line in whose blow-up along the line is isomorphic to the projective bundle over .