Chaewon Kim , Seokwon Hong , Eunmo Ku , Hyun Ju Oh , Byungkyu Jeon , Hoseong Lee , Hyunchul Ahn , Jun Choi , Jihyun Bae , Yeong Og Choi , Byoung-Sun Lee
{"title":"设计固有极化纳米纤维膜,实现卓越过滤性能","authors":"Chaewon Kim , Seokwon Hong , Eunmo Ku , Hyun Ju Oh , Byungkyu Jeon , Hoseong Lee , Hyunchul Ahn , Jun Choi , Jihyun Bae , Yeong Og Choi , Byoung-Sun Lee","doi":"10.1016/j.jiec.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>As airborne particulate matter (PM) such as pathogens and ultrafine dust threaten the human health, air quality control technologies are becoming increasingly important. Herein, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofibers with various fiber diameters and pore size distributions were prepared using various compositions of volatile (acetone) and less volatile <em>N,N</em>-dimethylformamide (DMF) solvent mixtures to design the optimum filtration media. Morphologies and molecular configurations were examined thoroughly with respect to the filtration performance. Among the various solvent compositions, the specimen prepared with the lowest DMF content (denoted as ePVdF-HFP55) showed the best filtration performance, with a filtration efficiency of 99.95% and a pressure drop of 29.0 mmH<sub>2</sub>O. The quality factor (QF) of ePVdF-HFP55 (0.0266 Pa<sup>−1</sup>) is superior to that achieved in electrospun nanofibrous media in previous works. In addition, the QF was further improved to 0.0276 Pa<sup>−1</sup>, with a remarkably reduced resistance of 14.45 mmH<sub>2</sub>O achieved by employing the layered nanofiber media with a PVdF-HFP top layer. Our work demonstrates that optimization of the inherently polarized nanofiber synthesis is a fruitful pathway to enhancing the filtration performance of air filter media.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"141 ","pages":"Pages 421-430"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of inherently polarized nanofiber-based membranes for superior filtration performance\",\"authors\":\"Chaewon Kim , Seokwon Hong , Eunmo Ku , Hyun Ju Oh , Byungkyu Jeon , Hoseong Lee , Hyunchul Ahn , Jun Choi , Jihyun Bae , Yeong Og Choi , Byoung-Sun Lee\",\"doi\":\"10.1016/j.jiec.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As airborne particulate matter (PM) such as pathogens and ultrafine dust threaten the human health, air quality control technologies are becoming increasingly important. Herein, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofibers with various fiber diameters and pore size distributions were prepared using various compositions of volatile (acetone) and less volatile <em>N,N</em>-dimethylformamide (DMF) solvent mixtures to design the optimum filtration media. Morphologies and molecular configurations were examined thoroughly with respect to the filtration performance. Among the various solvent compositions, the specimen prepared with the lowest DMF content (denoted as ePVdF-HFP55) showed the best filtration performance, with a filtration efficiency of 99.95% and a pressure drop of 29.0 mmH<sub>2</sub>O. The quality factor (QF) of ePVdF-HFP55 (0.0266 Pa<sup>−1</sup>) is superior to that achieved in electrospun nanofibrous media in previous works. In addition, the QF was further improved to 0.0276 Pa<sup>−1</sup>, with a remarkably reduced resistance of 14.45 mmH<sub>2</sub>O achieved by employing the layered nanofiber media with a PVdF-HFP top layer. Our work demonstrates that optimization of the inherently polarized nanofiber synthesis is a fruitful pathway to enhancing the filtration performance of air filter media.</div></div>\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"141 \",\"pages\":\"Pages 421-430\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226086X24004386\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X24004386","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design of inherently polarized nanofiber-based membranes for superior filtration performance
As airborne particulate matter (PM) such as pathogens and ultrafine dust threaten the human health, air quality control technologies are becoming increasingly important. Herein, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofibers with various fiber diameters and pore size distributions were prepared using various compositions of volatile (acetone) and less volatile N,N-dimethylformamide (DMF) solvent mixtures to design the optimum filtration media. Morphologies and molecular configurations were examined thoroughly with respect to the filtration performance. Among the various solvent compositions, the specimen prepared with the lowest DMF content (denoted as ePVdF-HFP55) showed the best filtration performance, with a filtration efficiency of 99.95% and a pressure drop of 29.0 mmH2O. The quality factor (QF) of ePVdF-HFP55 (0.0266 Pa−1) is superior to that achieved in electrospun nanofibrous media in previous works. In addition, the QF was further improved to 0.0276 Pa−1, with a remarkably reduced resistance of 14.45 mmH2O achieved by employing the layered nanofiber media with a PVdF-HFP top layer. Our work demonstrates that optimization of the inherently polarized nanofiber synthesis is a fruitful pathway to enhancing the filtration performance of air filter media.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.