{"title":"乔木和灌木物种对伊朗北部林地的土壤质量、溪流造成的沉积物脱落能力和地表斜坡稳定性的影响","authors":"Misagh Parhizkar","doi":"10.1016/j.ijsrc.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>A root system is an important factor to increase soil resistance to detachment of soil particles. However, due to the large number of species, there is a need for studying the impacts of native plant species on soil quality and soil erodibility. This investigation did flume experiments at various soil slopes (9.2%, 18.1%, 25.1%, and 32.5%) and different water flow rates (0.56, 0.67, 0.74, 0.81, and 0.94 L/(m·s)), to evaluate sediment detachment capacity caused by rills (<em>D</em><sub>c</sub>) and rill erodibility (<em>K</em><sub>r</sub>) as well as the soil quality of hillslopes with three common species including <em>Carpinus betulus</em> (as a natural tree species), <em>Alnus glutinosa</em> (as a planted tree species) and <em>Mespilus germanica</em> (as a shrub species) in forestland of northern Iran. The variability of <em>D</em><sub>c</sub> has been associated with soil properties and root characteristics of <em>Carpinus betulus</em>. <em>D</em><sub>c</sub> was significantly lower (average, −45%) for soils under <em>Carpinus betulus</em> compared to soils with the two other plant species (<em>p</em> < 0.01). This was due to the higher values of soil properties including medium weight diameter of soil aggregates (MWD), organic carbon (OC), total nitrogen (TN), total phosphorous (TP), potassium (K), calcium (Ca), magnesium (Mg) as well as to the more extended root system, as confirmed by the negative correlations between <em>D</em><sub>c</sub> and the studied variables. <em>K</em><sub>r</sub> also was different among the studied soils and plant species. The root system of <em>Carpinus betulus</em> also played a useful role for increasing soil resistance to rill erosion yielding a safety factor (1.61) in the studied forest ecosystem. Overall, the current study supports a broader use of native species (such as <em>Carpinus betulus</em>) in areas exposed to surface erosion and instability, as an effective eco-engineering conservation technique and an alternative technology instead of utilizing artificial and expensive management practices.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 5","pages":"Pages 795-803"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100162792400074X/pdfft?md5=9520cf1f43d4c919dcc36a3e861765bc&pid=1-s2.0-S100162792400074X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of tree and shrub species on soil quality, sediment detachment capacity caused by rills and surface slope stability in forest lands of Northern Iran\",\"authors\":\"Misagh Parhizkar\",\"doi\":\"10.1016/j.ijsrc.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A root system is an important factor to increase soil resistance to detachment of soil particles. However, due to the large number of species, there is a need for studying the impacts of native plant species on soil quality and soil erodibility. This investigation did flume experiments at various soil slopes (9.2%, 18.1%, 25.1%, and 32.5%) and different water flow rates (0.56, 0.67, 0.74, 0.81, and 0.94 L/(m·s)), to evaluate sediment detachment capacity caused by rills (<em>D</em><sub>c</sub>) and rill erodibility (<em>K</em><sub>r</sub>) as well as the soil quality of hillslopes with three common species including <em>Carpinus betulus</em> (as a natural tree species), <em>Alnus glutinosa</em> (as a planted tree species) and <em>Mespilus germanica</em> (as a shrub species) in forestland of northern Iran. The variability of <em>D</em><sub>c</sub> has been associated with soil properties and root characteristics of <em>Carpinus betulus</em>. <em>D</em><sub>c</sub> was significantly lower (average, −45%) for soils under <em>Carpinus betulus</em> compared to soils with the two other plant species (<em>p</em> < 0.01). This was due to the higher values of soil properties including medium weight diameter of soil aggregates (MWD), organic carbon (OC), total nitrogen (TN), total phosphorous (TP), potassium (K), calcium (Ca), magnesium (Mg) as well as to the more extended root system, as confirmed by the negative correlations between <em>D</em><sub>c</sub> and the studied variables. <em>K</em><sub>r</sub> also was different among the studied soils and plant species. The root system of <em>Carpinus betulus</em> also played a useful role for increasing soil resistance to rill erosion yielding a safety factor (1.61) in the studied forest ecosystem. Overall, the current study supports a broader use of native species (such as <em>Carpinus betulus</em>) in areas exposed to surface erosion and instability, as an effective eco-engineering conservation technique and an alternative technology instead of utilizing artificial and expensive management practices.</p></div>\",\"PeriodicalId\":50290,\"journal\":{\"name\":\"International Journal of Sediment Research\",\"volume\":\"39 5\",\"pages\":\"Pages 795-803\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S100162792400074X/pdfft?md5=9520cf1f43d4c919dcc36a3e861765bc&pid=1-s2.0-S100162792400074X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sediment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100162792400074X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sediment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100162792400074X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effects of tree and shrub species on soil quality, sediment detachment capacity caused by rills and surface slope stability in forest lands of Northern Iran
A root system is an important factor to increase soil resistance to detachment of soil particles. However, due to the large number of species, there is a need for studying the impacts of native plant species on soil quality and soil erodibility. This investigation did flume experiments at various soil slopes (9.2%, 18.1%, 25.1%, and 32.5%) and different water flow rates (0.56, 0.67, 0.74, 0.81, and 0.94 L/(m·s)), to evaluate sediment detachment capacity caused by rills (Dc) and rill erodibility (Kr) as well as the soil quality of hillslopes with three common species including Carpinus betulus (as a natural tree species), Alnus glutinosa (as a planted tree species) and Mespilus germanica (as a shrub species) in forestland of northern Iran. The variability of Dc has been associated with soil properties and root characteristics of Carpinus betulus. Dc was significantly lower (average, −45%) for soils under Carpinus betulus compared to soils with the two other plant species (p < 0.01). This was due to the higher values of soil properties including medium weight diameter of soil aggregates (MWD), organic carbon (OC), total nitrogen (TN), total phosphorous (TP), potassium (K), calcium (Ca), magnesium (Mg) as well as to the more extended root system, as confirmed by the negative correlations between Dc and the studied variables. Kr also was different among the studied soils and plant species. The root system of Carpinus betulus also played a useful role for increasing soil resistance to rill erosion yielding a safety factor (1.61) in the studied forest ecosystem. Overall, the current study supports a broader use of native species (such as Carpinus betulus) in areas exposed to surface erosion and instability, as an effective eco-engineering conservation technique and an alternative technology instead of utilizing artificial and expensive management practices.
期刊介绍:
International Journal of Sediment Research, the Official Journal of The International Research and Training Center on Erosion and Sedimentation and The World Association for Sedimentation and Erosion Research, publishes scientific and technical papers on all aspects of erosion and sedimentation interpreted in its widest sense.
The subject matter is to include not only the mechanics of sediment transport and fluvial processes, but also what is related to geography, geomorphology, soil erosion, watershed management, sedimentology, environmental and ecological impacts of sedimentation, social and economical effects of sedimentation and its assessment, etc. Special attention is paid to engineering problems related to sedimentation and erosion.