Mehmetcan Bilkay , Cigdem Kanbes-Dindar , Burcin Bozal-Palabiyik , Gokcen Eren , Hayriye Eda Satana Kara , Bengi Uslu
{"title":"抗组胺药物地氯雷他定与 dsDNA 之间相互作用的光谱、电化学和分子对接研究","authors":"Mehmetcan Bilkay , Cigdem Kanbes-Dindar , Burcin Bozal-Palabiyik , Gokcen Eren , Hayriye Eda Satana Kara , Bengi Uslu","doi":"10.1016/j.ab.2024.115622","DOIUrl":null,"url":null,"abstract":"<div><p>Through the utilization of fluorescence spectroscopy, electrochemical, and molecular docking methods, this research investigates the interaction between the antihistamine drug desloratadine and calf thymus double-stranded DNA (ct-dsDNA). Deoxyguanosine (dGuo) and deoxyadenosine (dAdo) oxidation signals were diminished by incubation with varying concentrations of desloratadine, as determined by differential pulse voltammetry (DPV). This change was ascribed to desloratadine's binding mechanism to ct-dsDNA. The binding constant (K<sub>b</sub>) between desloratadine and ct-dsDNA was determined to be 2.2 × 10<sup>5</sup> M<sup>−1</sup> throughout electrochemical experiments. In order to further develop our comprehension of the interaction mechanism between desloratadine and ct-dsDNA, a series of spectroscopic experiments and molecular docking simulations were conducted. The K<sub>b</sub> value was found to be 8.85 × 10<sup>4</sup> M<sup>−1</sup> at a temperature of 25 °C by the use of fluorescence spectroscopic techniques. In summary, the utilization of electrochemical and spectroscopic techniques, alongside molecular docking investigations, has led to the prediction that desloratadine has the capability to interact with ct-dsDNA by groove binding.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"694 ","pages":"Article 115622"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopic, electrochemical, and molecular docking studies of the interaction between the antihistamine drug desloratadine and dsDNA\",\"authors\":\"Mehmetcan Bilkay , Cigdem Kanbes-Dindar , Burcin Bozal-Palabiyik , Gokcen Eren , Hayriye Eda Satana Kara , Bengi Uslu\",\"doi\":\"10.1016/j.ab.2024.115622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Through the utilization of fluorescence spectroscopy, electrochemical, and molecular docking methods, this research investigates the interaction between the antihistamine drug desloratadine and calf thymus double-stranded DNA (ct-dsDNA). Deoxyguanosine (dGuo) and deoxyadenosine (dAdo) oxidation signals were diminished by incubation with varying concentrations of desloratadine, as determined by differential pulse voltammetry (DPV). This change was ascribed to desloratadine's binding mechanism to ct-dsDNA. The binding constant (K<sub>b</sub>) between desloratadine and ct-dsDNA was determined to be 2.2 × 10<sup>5</sup> M<sup>−1</sup> throughout electrochemical experiments. In order to further develop our comprehension of the interaction mechanism between desloratadine and ct-dsDNA, a series of spectroscopic experiments and molecular docking simulations were conducted. The K<sub>b</sub> value was found to be 8.85 × 10<sup>4</sup> M<sup>−1</sup> at a temperature of 25 °C by the use of fluorescence spectroscopic techniques. In summary, the utilization of electrochemical and spectroscopic techniques, alongside molecular docking investigations, has led to the prediction that desloratadine has the capability to interact with ct-dsDNA by groove binding.</p></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"694 \",\"pages\":\"Article 115622\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269724001660\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001660","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Spectroscopic, electrochemical, and molecular docking studies of the interaction between the antihistamine drug desloratadine and dsDNA
Through the utilization of fluorescence spectroscopy, electrochemical, and molecular docking methods, this research investigates the interaction between the antihistamine drug desloratadine and calf thymus double-stranded DNA (ct-dsDNA). Deoxyguanosine (dGuo) and deoxyadenosine (dAdo) oxidation signals were diminished by incubation with varying concentrations of desloratadine, as determined by differential pulse voltammetry (DPV). This change was ascribed to desloratadine's binding mechanism to ct-dsDNA. The binding constant (Kb) between desloratadine and ct-dsDNA was determined to be 2.2 × 105 M−1 throughout electrochemical experiments. In order to further develop our comprehension of the interaction mechanism between desloratadine and ct-dsDNA, a series of spectroscopic experiments and molecular docking simulations were conducted. The Kb value was found to be 8.85 × 104 M−1 at a temperature of 25 °C by the use of fluorescence spectroscopic techniques. In summary, the utilization of electrochemical and spectroscopic techniques, alongside molecular docking investigations, has led to the prediction that desloratadine has the capability to interact with ct-dsDNA by groove binding.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.