聚(2,4-呋喃烯酸烷基酯):结构异构性在实现出色的可持续食品包装方面的潜力以及自修复微观结构的意外证据

IF 4.5 3区 工程技术 Q1 CHEMISTRY, APPLIED
{"title":"聚(2,4-呋喃烯酸烷基酯):结构异构性在实现出色的可持续食品包装方面的潜力以及自修复微观结构的意外证据","authors":"","doi":"10.1016/j.reactfunctpolym.2024.106010","DOIUrl":null,"url":null,"abstract":"<div><p>2,5-furandicarboxylic acid is an extremely appealing renewable chemical building block because of its potential to replace the petrochemical and industrially widespread terephthalic acid via the synthesis of poly(alkylene 2,5-furanoate)s (2,5-PAF). The recent interest in its structural isomer, 2,4-furandicarboxylic acid (2,4-FDCA), opened the study of poly(alkylene 2,4-furanoate)s (2,4-PAF). In this work, 2,4-FDCA was polymerized with linear glycols of increasing chain length, via a solvent-free polycondensation reaction, obtaining high molecular weight 2,4-PAF. Namely, poly(trimethylene 2,4-furanoate) (2,4-PTF), poly(pentamethylene 2,4-furanoate) (2,4-PPeF) and poly(hexamethylene 2,4-furanoate) (2,4-PHF). These polyesters were compression molded into films and subjected to NMR, GPC, WAXS, PLOM, TGA and DSC analyses. The functional properties for food packaging applications were evaluated by mechanical and gas permeability tests. 2,4-PAF had tunable mechanical properties, depending on the glycol used, and in some cases, the mechanical behavior of a thermoplastic elastomer and shape recovery after break. In particular, 2,4-PPeF had outstanding gas barrier properties, while DSC analyses on 2,4-PHF showed an endothermic phenomenon attributed to the isotropization of a partially-ordered phase: it was possible to demonstrate that this phase was disrupted during tensile tests and slowly recovered over time, at room temperature. Overall, the results offer new insights into the structure-property relationships of poly(alkylene 2,4-furanoate)s and display their great potential for the production of biobased, monomaterial, easily recyclable and sustainable food packaging.</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1381514824001858/pdfft?md5=dba9b70546ed68f2595539bdd3c61ad6&pid=1-s2.0-S1381514824001858-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Poly(alkylene 2,4-furanoate)s: The potential of structural isomerism for outstanding sustainable food packaging and unexpected evidence of self-healing microstructure\",\"authors\":\"\",\"doi\":\"10.1016/j.reactfunctpolym.2024.106010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>2,5-furandicarboxylic acid is an extremely appealing renewable chemical building block because of its potential to replace the petrochemical and industrially widespread terephthalic acid via the synthesis of poly(alkylene 2,5-furanoate)s (2,5-PAF). The recent interest in its structural isomer, 2,4-furandicarboxylic acid (2,4-FDCA), opened the study of poly(alkylene 2,4-furanoate)s (2,4-PAF). In this work, 2,4-FDCA was polymerized with linear glycols of increasing chain length, via a solvent-free polycondensation reaction, obtaining high molecular weight 2,4-PAF. Namely, poly(trimethylene 2,4-furanoate) (2,4-PTF), poly(pentamethylene 2,4-furanoate) (2,4-PPeF) and poly(hexamethylene 2,4-furanoate) (2,4-PHF). These polyesters were compression molded into films and subjected to NMR, GPC, WAXS, PLOM, TGA and DSC analyses. The functional properties for food packaging applications were evaluated by mechanical and gas permeability tests. 2,4-PAF had tunable mechanical properties, depending on the glycol used, and in some cases, the mechanical behavior of a thermoplastic elastomer and shape recovery after break. In particular, 2,4-PPeF had outstanding gas barrier properties, while DSC analyses on 2,4-PHF showed an endothermic phenomenon attributed to the isotropization of a partially-ordered phase: it was possible to demonstrate that this phase was disrupted during tensile tests and slowly recovered over time, at room temperature. Overall, the results offer new insights into the structure-property relationships of poly(alkylene 2,4-furanoate)s and display their great potential for the production of biobased, monomaterial, easily recyclable and sustainable food packaging.</p></div>\",\"PeriodicalId\":20916,\"journal\":{\"name\":\"Reactive & Functional Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1381514824001858/pdfft?md5=dba9b70546ed68f2595539bdd3c61ad6&pid=1-s2.0-S1381514824001858-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactive & Functional Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381514824001858\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824001858","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

2,5-呋喃二甲酸是一种极具吸引力的可再生化学结构单元,因为它有可能通过合成聚(2,5-呋喃烯酸)(2,5-PAF)取代石油化学和工业上广泛使用的对苯二甲酸。最近,人们对其结构异构体--2,4-呋喃二甲酸(2,4-FDCA)产生了浓厚的兴趣,从而开启了对聚(2,4-呋喃烯酸)(2,4-PAF)的研究。在这项研究中,2,4-FDCA 与链长不断增加的线性乙二醇通过无溶剂缩聚反应聚合,得到了高分子量的 2,4-PAF。即聚(2,4-呋喃三亚甲基酯)(2,4-PTF)、聚(2,4-呋喃五亚甲基酯)(2,4-PPeF)和聚(2,4-呋喃六亚甲基酯)(2,4-PHF)。这些聚酯被压缩成型为薄膜,并进行了 NMR、GPC、WAXS、PLOM、TGA 和 DSC 分析。通过机械和气体渗透性测试评估了食品包装应用的功能特性。2,4-PAF具有可调的机械特性,这取决于所使用的乙二醇,在某些情况下还取决于热塑性弹性体的机械行为和断裂后的形状恢复。其中,2,4-PPeF 具有出色的气体阻隔性能,而对 2,4-PHF 进行的 DSC 分析则显示了一种归因于部分有序相同素异形化的内热现象:可以证明这种相在拉伸试验中被破坏,并随着时间的推移在室温下缓慢恢复。总之,研究结果为了解聚(2,4-呋喃烯酸烷基酯)的结构-性能关系提供了新的视角,并展示了它们在生产生物基、单一材料、易回收和可持续食品包装方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Poly(alkylene 2,4-furanoate)s: The potential of structural isomerism for outstanding sustainable food packaging and unexpected evidence of self-healing microstructure

Poly(alkylene 2,4-furanoate)s: The potential of structural isomerism for outstanding sustainable food packaging and unexpected evidence of self-healing microstructure

2,5-furandicarboxylic acid is an extremely appealing renewable chemical building block because of its potential to replace the petrochemical and industrially widespread terephthalic acid via the synthesis of poly(alkylene 2,5-furanoate)s (2,5-PAF). The recent interest in its structural isomer, 2,4-furandicarboxylic acid (2,4-FDCA), opened the study of poly(alkylene 2,4-furanoate)s (2,4-PAF). In this work, 2,4-FDCA was polymerized with linear glycols of increasing chain length, via a solvent-free polycondensation reaction, obtaining high molecular weight 2,4-PAF. Namely, poly(trimethylene 2,4-furanoate) (2,4-PTF), poly(pentamethylene 2,4-furanoate) (2,4-PPeF) and poly(hexamethylene 2,4-furanoate) (2,4-PHF). These polyesters were compression molded into films and subjected to NMR, GPC, WAXS, PLOM, TGA and DSC analyses. The functional properties for food packaging applications were evaluated by mechanical and gas permeability tests. 2,4-PAF had tunable mechanical properties, depending on the glycol used, and in some cases, the mechanical behavior of a thermoplastic elastomer and shape recovery after break. In particular, 2,4-PPeF had outstanding gas barrier properties, while DSC analyses on 2,4-PHF showed an endothermic phenomenon attributed to the isotropization of a partially-ordered phase: it was possible to demonstrate that this phase was disrupted during tensile tests and slowly recovered over time, at room temperature. Overall, the results offer new insights into the structure-property relationships of poly(alkylene 2,4-furanoate)s and display their great potential for the production of biobased, monomaterial, easily recyclable and sustainable food packaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reactive & Functional Polymers
Reactive & Functional Polymers 工程技术-高分子科学
CiteScore
8.90
自引率
5.90%
发文量
259
审稿时长
27 days
期刊介绍: Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers. Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信