利用开源工具制作微流控液滴发生器的精确数值原型

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
David Gabriel Harispe, Pablo A. Kler
{"title":"利用开源工具制作微流控液滴发生器的精确数值原型","authors":"David Gabriel Harispe,&nbsp;Pablo A. Kler","doi":"10.1016/j.compfluid.2024.106366","DOIUrl":null,"url":null,"abstract":"<div><p>Droplet-based microfluidics gained significant attention for its high technological impact in various fields like (bio)analysis and (bio)synthesis. Precise and controlled droplet size is critical, for the encapsulated products, or the yield of chemical reactions. In a broad range of experimental parameters, the understanding of how droplets form, interact and move with accurate predictive models is crucial. In this work, numerical prototypes of droplet generators were made with Basilisk, an open source software for solving partial differential equations on adaptive Cartesian meshes including grid adaptation and scalability for High-Performance Computing (HPC). This research aims to analyze and compare the obtained droplets against existing experimental data. The evaluation involves qualitative and quantitative comparisons, considering various channel geometries, flow rates, and rheological conditions. The validation of the proposed tool in terms of accuracy and computational performance, enable us to offer to the microfluidics community a reliable tool to design and optimize droplet generators.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"281 ","pages":"Article 106366"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate numerical prototypes of microfluidic droplet generators with open source tools\",\"authors\":\"David Gabriel Harispe,&nbsp;Pablo A. Kler\",\"doi\":\"10.1016/j.compfluid.2024.106366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Droplet-based microfluidics gained significant attention for its high technological impact in various fields like (bio)analysis and (bio)synthesis. Precise and controlled droplet size is critical, for the encapsulated products, or the yield of chemical reactions. In a broad range of experimental parameters, the understanding of how droplets form, interact and move with accurate predictive models is crucial. In this work, numerical prototypes of droplet generators were made with Basilisk, an open source software for solving partial differential equations on adaptive Cartesian meshes including grid adaptation and scalability for High-Performance Computing (HPC). This research aims to analyze and compare the obtained droplets against existing experimental data. The evaluation involves qualitative and quantitative comparisons, considering various channel geometries, flow rates, and rheological conditions. The validation of the proposed tool in terms of accuracy and computational performance, enable us to offer to the microfluidics community a reliable tool to design and optimize droplet generators.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"281 \",\"pages\":\"Article 106366\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024001981\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001981","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于液滴的微流控技术在(生物)分析和(生物)合成等多个领域都具有重要的技术影响,因而备受关注。精确可控的液滴大小对于封装产品或化学反应的产量至关重要。在广泛的实验参数范围内,了解液滴如何形成、相互作用和移动以及准确的预测模型至关重要。Basilisk 是一款开源软件,用于在自适应笛卡尔网格上求解偏微分方程,包括网格适应性和高性能计算(HPC)的可扩展性。本研究旨在将获得的液滴与现有实验数据进行分析和比较。评估涉及定性和定量比较,考虑了各种通道几何形状、流速和流变条件。通过对所提工具在准确性和计算性能方面的验证,我们能够为微流控领域提供一种可靠的工具,用于设计和优化液滴发生器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate numerical prototypes of microfluidic droplet generators with open source tools

Droplet-based microfluidics gained significant attention for its high technological impact in various fields like (bio)analysis and (bio)synthesis. Precise and controlled droplet size is critical, for the encapsulated products, or the yield of chemical reactions. In a broad range of experimental parameters, the understanding of how droplets form, interact and move with accurate predictive models is crucial. In this work, numerical prototypes of droplet generators were made with Basilisk, an open source software for solving partial differential equations on adaptive Cartesian meshes including grid adaptation and scalability for High-Performance Computing (HPC). This research aims to analyze and compare the obtained droplets against existing experimental data. The evaluation involves qualitative and quantitative comparisons, considering various channel geometries, flow rates, and rheological conditions. The validation of the proposed tool in terms of accuracy and computational performance, enable us to offer to the microfluidics community a reliable tool to design and optimize droplet generators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信