收缩比 λ=1 的二次吸引细分
IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Kȩstutis Karčiauskas , Jörg Peters
{"title":"收缩比 λ=1 的二次吸引细分</mml:mro","authors":"Kȩstutis Karčiauskas ,&nbsp;Jörg Peters","doi":"10.1016/j.cag.2024.104001","DOIUrl":null,"url":null,"abstract":"<div><p>Classic generalized subdivision, such as Catmull–Clark subdivision, as well as recent subdivision algorithms for high-quality surfaces, rely on slower convergence towards extraordinary points for mesh nodes surrounded by <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>4</mn></mrow></math></span> quadrilaterals. Slow convergence corresponds to a contraction-ratio of <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>. To improve shape, prevent parameterization discordant with surface growth, or to improve convergence in isogeometric analysis near extraordinary points, a number of algorithms explicitly adjust <span><math><mi>λ</mi></math></span> by altering refinement rules. However, such tuning of <span><math><mi>λ</mi></math></span> has so far led to poorer surface quality, visible as uneven distribution or oscillation of highlight lines. The recent Quadratic-Attraction Subdivision (QAS) generates high-quality, bounded curvature surfaces based on a careful choice of quadratic expansion at the central point and, just like Catmull–Clark subdivision, creates the control points of the next subdivision ring by matrix multiplication. But QAS shares the contraction-ratio <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>C</mi><mi>C</mi></mrow></msub><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> of Catmull–Clark subdivision when <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>4</mn></mrow></math></span>. For <span><math><mrow><mi>n</mi><mo>=</mo><mn>5</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>10</mn></mrow></math></span>, QAS<span><math><msub><mrow></mrow><mrow><mo>+</mo></mrow></msub></math></span> improves the convergence to the uniform <span><math><mrow><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> of binary domain refinement and without sacrificing surface quality compared to QAS.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"123 ","pages":"Article 104001"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratic-attraction subdivision with contraction-ratio λ=12\",\"authors\":\"Kȩstutis Karčiauskas ,&nbsp;Jörg Peters\",\"doi\":\"10.1016/j.cag.2024.104001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Classic generalized subdivision, such as Catmull–Clark subdivision, as well as recent subdivision algorithms for high-quality surfaces, rely on slower convergence towards extraordinary points for mesh nodes surrounded by <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>4</mn></mrow></math></span> quadrilaterals. Slow convergence corresponds to a contraction-ratio of <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>. To improve shape, prevent parameterization discordant with surface growth, or to improve convergence in isogeometric analysis near extraordinary points, a number of algorithms explicitly adjust <span><math><mi>λ</mi></math></span> by altering refinement rules. However, such tuning of <span><math><mi>λ</mi></math></span> has so far led to poorer surface quality, visible as uneven distribution or oscillation of highlight lines. The recent Quadratic-Attraction Subdivision (QAS) generates high-quality, bounded curvature surfaces based on a careful choice of quadratic expansion at the central point and, just like Catmull–Clark subdivision, creates the control points of the next subdivision ring by matrix multiplication. But QAS shares the contraction-ratio <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>C</mi><mi>C</mi></mrow></msub><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> of Catmull–Clark subdivision when <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>4</mn></mrow></math></span>. For <span><math><mrow><mi>n</mi><mo>=</mo><mn>5</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>10</mn></mrow></math></span>, QAS<span><math><msub><mrow></mrow><mrow><mo>+</mo></mrow></msub></math></span> improves the convergence to the uniform <span><math><mrow><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> of binary domain refinement and without sacrificing surface quality compared to QAS.</p></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"123 \",\"pages\":\"Article 104001\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324001365\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324001365","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

经典的广义细分(如 Catmull-Clark 细分)以及最新的高质量曲面细分算法,都依赖于由 n>4 个四边形包围的网格节点向非常点的缓慢收敛。缓慢收敛相当于 λ>0.5 的收缩比。为了改善形状,防止参数化与表面生长不协调,或改善非常点附近等几何分析的收敛性,许多算法通过改变细化规则来明确调整 λ。然而,迄今为止,这种对 λ 的调整导致了较差的表面质量,表现为高亮线的不均匀分布或摆动。最近的二次吸引细分法(QAS)基于对中心点二次展开的谨慎选择,生成高质量、有约束曲率的曲面,并且与 Catmull-Clark 细分法一样,通过矩阵乘法创建下一个细分环的控制点。但当 n>4 时,QAS 与 Catmull-Clark 细分的收缩率 λCC>1/2 相同。当 n=5,...,10 时,与 QAS 相比,QAS+ 提高了对二元域细化的统一 λ=12 的收敛性,且不影响曲面质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quadratic-attraction subdivision with contraction-ratio λ=12

Quadratic-attraction subdivision with contraction-ratio λ=12

Classic generalized subdivision, such as Catmull–Clark subdivision, as well as recent subdivision algorithms for high-quality surfaces, rely on slower convergence towards extraordinary points for mesh nodes surrounded by n>4 quadrilaterals. Slow convergence corresponds to a contraction-ratio of λ>0.5. To improve shape, prevent parameterization discordant with surface growth, or to improve convergence in isogeometric analysis near extraordinary points, a number of algorithms explicitly adjust λ by altering refinement rules. However, such tuning of λ has so far led to poorer surface quality, visible as uneven distribution or oscillation of highlight lines. The recent Quadratic-Attraction Subdivision (QAS) generates high-quality, bounded curvature surfaces based on a careful choice of quadratic expansion at the central point and, just like Catmull–Clark subdivision, creates the control points of the next subdivision ring by matrix multiplication. But QAS shares the contraction-ratio λCC>1/2 of Catmull–Clark subdivision when n>4. For n=5,,10, QAS+ improves the convergence to the uniform λ=12 of binary domain refinement and without sacrificing surface quality compared to QAS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信