{"title":"收缩比 λ=1 的二次吸引细分</mml:mro","authors":"Kȩstutis Karčiauskas , Jörg Peters","doi":"10.1016/j.cag.2024.104001","DOIUrl":null,"url":null,"abstract":"<div><p>Classic generalized subdivision, such as Catmull–Clark subdivision, as well as recent subdivision algorithms for high-quality surfaces, rely on slower convergence towards extraordinary points for mesh nodes surrounded by <span><math><mrow><mi>n</mi><mo>></mo><mn>4</mn></mrow></math></span> quadrilaterals. Slow convergence corresponds to a contraction-ratio of <span><math><mrow><mi>λ</mi><mo>></mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>. To improve shape, prevent parameterization discordant with surface growth, or to improve convergence in isogeometric analysis near extraordinary points, a number of algorithms explicitly adjust <span><math><mi>λ</mi></math></span> by altering refinement rules. However, such tuning of <span><math><mi>λ</mi></math></span> has so far led to poorer surface quality, visible as uneven distribution or oscillation of highlight lines. The recent Quadratic-Attraction Subdivision (QAS) generates high-quality, bounded curvature surfaces based on a careful choice of quadratic expansion at the central point and, just like Catmull–Clark subdivision, creates the control points of the next subdivision ring by matrix multiplication. But QAS shares the contraction-ratio <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>C</mi><mi>C</mi></mrow></msub><mo>></mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> of Catmull–Clark subdivision when <span><math><mrow><mi>n</mi><mo>></mo><mn>4</mn></mrow></math></span>. For <span><math><mrow><mi>n</mi><mo>=</mo><mn>5</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>10</mn></mrow></math></span>, QAS<span><math><msub><mrow></mrow><mrow><mo>+</mo></mrow></msub></math></span> improves the convergence to the uniform <span><math><mrow><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> of binary domain refinement and without sacrificing surface quality compared to QAS.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"123 ","pages":"Article 104001"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratic-attraction subdivision with contraction-ratio λ=12\",\"authors\":\"Kȩstutis Karčiauskas , Jörg Peters\",\"doi\":\"10.1016/j.cag.2024.104001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Classic generalized subdivision, such as Catmull–Clark subdivision, as well as recent subdivision algorithms for high-quality surfaces, rely on slower convergence towards extraordinary points for mesh nodes surrounded by <span><math><mrow><mi>n</mi><mo>></mo><mn>4</mn></mrow></math></span> quadrilaterals. Slow convergence corresponds to a contraction-ratio of <span><math><mrow><mi>λ</mi><mo>></mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>. To improve shape, prevent parameterization discordant with surface growth, or to improve convergence in isogeometric analysis near extraordinary points, a number of algorithms explicitly adjust <span><math><mi>λ</mi></math></span> by altering refinement rules. However, such tuning of <span><math><mi>λ</mi></math></span> has so far led to poorer surface quality, visible as uneven distribution or oscillation of highlight lines. The recent Quadratic-Attraction Subdivision (QAS) generates high-quality, bounded curvature surfaces based on a careful choice of quadratic expansion at the central point and, just like Catmull–Clark subdivision, creates the control points of the next subdivision ring by matrix multiplication. But QAS shares the contraction-ratio <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>C</mi><mi>C</mi></mrow></msub><mo>></mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> of Catmull–Clark subdivision when <span><math><mrow><mi>n</mi><mo>></mo><mn>4</mn></mrow></math></span>. For <span><math><mrow><mi>n</mi><mo>=</mo><mn>5</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>10</mn></mrow></math></span>, QAS<span><math><msub><mrow></mrow><mrow><mo>+</mo></mrow></msub></math></span> improves the convergence to the uniform <span><math><mrow><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> of binary domain refinement and without sacrificing surface quality compared to QAS.</p></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"123 \",\"pages\":\"Article 104001\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324001365\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324001365","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Quadratic-attraction subdivision with contraction-ratio λ=12
Classic generalized subdivision, such as Catmull–Clark subdivision, as well as recent subdivision algorithms for high-quality surfaces, rely on slower convergence towards extraordinary points for mesh nodes surrounded by quadrilaterals. Slow convergence corresponds to a contraction-ratio of . To improve shape, prevent parameterization discordant with surface growth, or to improve convergence in isogeometric analysis near extraordinary points, a number of algorithms explicitly adjust by altering refinement rules. However, such tuning of has so far led to poorer surface quality, visible as uneven distribution or oscillation of highlight lines. The recent Quadratic-Attraction Subdivision (QAS) generates high-quality, bounded curvature surfaces based on a careful choice of quadratic expansion at the central point and, just like Catmull–Clark subdivision, creates the control points of the next subdivision ring by matrix multiplication. But QAS shares the contraction-ratio of Catmull–Clark subdivision when . For , QAS improves the convergence to the uniform of binary domain refinement and without sacrificing surface quality compared to QAS.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.