奇异扰动反应扩散方程的巴赫瓦洛夫型网格上保形非连续伽勒金方法的超收敛性分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
{"title":"奇异扰动反应扩散方程的巴赫瓦洛夫型网格上保形非连续伽勒金方法的超收敛性分析","authors":"","doi":"10.1016/j.aml.2024.109227","DOIUrl":null,"url":null,"abstract":"<div><p>The conforming discontinuous Galerkin (CDG) method maximizes the utilization of all degrees of freedom of the discontinuous <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> polynomial to achieve a convergence rate two orders higher than its counterpart conforming finite element method employing continuous <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> element. Despite this superiority, there is little theory of the CDG methods for singular perturbation problems. In this paper, superconvergence of the CDG method is studied on a Bakhvalov-type mesh for a singularly perturbed reaction–diffusion problem. For this goal, a pre-existing least squares method has been utilized to ensure better approximation properties of the projection. On the basis of that, we derive superconvergence results for the CDG finite element solution in the energy norm and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and obtain uniform convergence of the CDG method for the first time.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconvergence analysis of the conforming discontinuous Galerkin method on a Bakhvalov-type mesh for singularly perturbed reaction–diffusion equation\",\"authors\":\"\",\"doi\":\"10.1016/j.aml.2024.109227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The conforming discontinuous Galerkin (CDG) method maximizes the utilization of all degrees of freedom of the discontinuous <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> polynomial to achieve a convergence rate two orders higher than its counterpart conforming finite element method employing continuous <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> element. Despite this superiority, there is little theory of the CDG methods for singular perturbation problems. In this paper, superconvergence of the CDG method is studied on a Bakhvalov-type mesh for a singularly perturbed reaction–diffusion problem. For this goal, a pre-existing least squares method has been utilized to ensure better approximation properties of the projection. On the basis of that, we derive superconvergence results for the CDG finite element solution in the energy norm and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and obtain uniform convergence of the CDG method for the first time.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924002477\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924002477","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

保形非连续伽勒金(CDG)方法最大限度地利用了非连续 Pk 多项式的所有自由度,其收敛速度比采用连续 Pk 元素的对应保形有限元方法高出两个数量级。尽管 CDG 方法具有这种优越性,但有关奇异扰动问题的理论却很少。本文针对奇异扰动反应扩散问题,在巴赫瓦洛夫型网格上研究了 CDG 方法的超收敛性。为实现这一目标,我们采用了一种已有的最小二乘法,以确保投影具有更好的近似特性。在此基础上,我们得出了 CDG 有限元解在能量规范和 L2 规范下的超收敛结果,并首次获得了 CDG 方法的均匀收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superconvergence analysis of the conforming discontinuous Galerkin method on a Bakhvalov-type mesh for singularly perturbed reaction–diffusion equation

The conforming discontinuous Galerkin (CDG) method maximizes the utilization of all degrees of freedom of the discontinuous Pk polynomial to achieve a convergence rate two orders higher than its counterpart conforming finite element method employing continuous Pk element. Despite this superiority, there is little theory of the CDG methods for singular perturbation problems. In this paper, superconvergence of the CDG method is studied on a Bakhvalov-type mesh for a singularly perturbed reaction–diffusion problem. For this goal, a pre-existing least squares method has been utilized to ensure better approximation properties of the projection. On the basis of that, we derive superconvergence results for the CDG finite element solution in the energy norm and L2-norm and obtain uniform convergence of the CDG method for the first time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信