Rajendran Thavasimuthu, P. M. Vidhya, S. Sridhar, S. P. Sasirekha, P. Sherubha
{"title":"水体中微塑料聚合物(聚乙烯、聚苯乙烯、低密度聚乙烯、聚羟基烷酸酯)的强化分类","authors":"Rajendran Thavasimuthu, P. M. Vidhya, S. Sridhar, S. P. Sasirekha, P. Sherubha","doi":"10.1002/pat.6506","DOIUrl":null,"url":null,"abstract":"The contamination of microplastics (MPs) creates a substantial risk to both the environment and human health, necessitating the development of efficient methods for detecting and categorizing these micro pollutant particles. As a solution, Dense‐UNet with Convolutional Vision Transformer (Dense‐UNet‐CvT), a novel deep learning (DL)‐based model is proposed to detect and classify the MPs by performing the computer vision tasks. The main objective of this work is to enhance the detection accuracy in detecting the MPs classified from the input images. Initially, a holographic MPs image dataset comprising primary classes such as polyethylene (PE), polystyrene (PS), low‐density polyethylene (LDPE), polyhydroxyalkanoate (PHA) is collected for training and evaluating the research model. The images from the dataset are preprocessed by performing image resizing, Recursive Exposure based Sub‐Image Histogram Equalization (RESIHE)‐based image enhancement, Gaussian Adaptive Bilateral Filtering (GABF)‐based denoising to improve the visual quality of the images. The preprocessed images are applied for segmentation using the Dense‐UNet model for performing semantic segmentation. The CvT model is implemented to extract useful features and to perform classification on detecting the known and unknown classes of MPs labeled in the collected dataset. The MPs detection and classification performances are computed in terms of detection rate, accuracy, f1‐score, and precision. The Dense‐UNet‐CvT model achieved 98.22% detection rate, 98.59% accuracy, 98.35% f1‐score, and 98.76% precision. These performances are compared with the current models for proper validation, in which the research model outperformed all the compared models in terms of performance. Overall, the proposed Dense‐UNet‐CvT model demonstrates superior performance across multiple evaluation metrics, suggesting its effectiveness in detecting and classifying MPs contamination in holographic images.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced classification of microplastic polymers (polyethylene, polystyrene, low‐density polyethylene, polyhydroxyalkanoate) in waterbodies\",\"authors\":\"Rajendran Thavasimuthu, P. M. Vidhya, S. Sridhar, S. P. Sasirekha, P. Sherubha\",\"doi\":\"10.1002/pat.6506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contamination of microplastics (MPs) creates a substantial risk to both the environment and human health, necessitating the development of efficient methods for detecting and categorizing these micro pollutant particles. As a solution, Dense‐UNet with Convolutional Vision Transformer (Dense‐UNet‐CvT), a novel deep learning (DL)‐based model is proposed to detect and classify the MPs by performing the computer vision tasks. The main objective of this work is to enhance the detection accuracy in detecting the MPs classified from the input images. Initially, a holographic MPs image dataset comprising primary classes such as polyethylene (PE), polystyrene (PS), low‐density polyethylene (LDPE), polyhydroxyalkanoate (PHA) is collected for training and evaluating the research model. The images from the dataset are preprocessed by performing image resizing, Recursive Exposure based Sub‐Image Histogram Equalization (RESIHE)‐based image enhancement, Gaussian Adaptive Bilateral Filtering (GABF)‐based denoising to improve the visual quality of the images. The preprocessed images are applied for segmentation using the Dense‐UNet model for performing semantic segmentation. The CvT model is implemented to extract useful features and to perform classification on detecting the known and unknown classes of MPs labeled in the collected dataset. The MPs detection and classification performances are computed in terms of detection rate, accuracy, f1‐score, and precision. The Dense‐UNet‐CvT model achieved 98.22% detection rate, 98.59% accuracy, 98.35% f1‐score, and 98.76% precision. These performances are compared with the current models for proper validation, in which the research model outperformed all the compared models in terms of performance. Overall, the proposed Dense‐UNet‐CvT model demonstrates superior performance across multiple evaluation metrics, suggesting its effectiveness in detecting and classifying MPs contamination in holographic images.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6506\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6506","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhanced classification of microplastic polymers (polyethylene, polystyrene, low‐density polyethylene, polyhydroxyalkanoate) in waterbodies
The contamination of microplastics (MPs) creates a substantial risk to both the environment and human health, necessitating the development of efficient methods for detecting and categorizing these micro pollutant particles. As a solution, Dense‐UNet with Convolutional Vision Transformer (Dense‐UNet‐CvT), a novel deep learning (DL)‐based model is proposed to detect and classify the MPs by performing the computer vision tasks. The main objective of this work is to enhance the detection accuracy in detecting the MPs classified from the input images. Initially, a holographic MPs image dataset comprising primary classes such as polyethylene (PE), polystyrene (PS), low‐density polyethylene (LDPE), polyhydroxyalkanoate (PHA) is collected for training and evaluating the research model. The images from the dataset are preprocessed by performing image resizing, Recursive Exposure based Sub‐Image Histogram Equalization (RESIHE)‐based image enhancement, Gaussian Adaptive Bilateral Filtering (GABF)‐based denoising to improve the visual quality of the images. The preprocessed images are applied for segmentation using the Dense‐UNet model for performing semantic segmentation. The CvT model is implemented to extract useful features and to perform classification on detecting the known and unknown classes of MPs labeled in the collected dataset. The MPs detection and classification performances are computed in terms of detection rate, accuracy, f1‐score, and precision. The Dense‐UNet‐CvT model achieved 98.22% detection rate, 98.59% accuracy, 98.35% f1‐score, and 98.76% precision. These performances are compared with the current models for proper validation, in which the research model outperformed all the compared models in terms of performance. Overall, the proposed Dense‐UNet‐CvT model demonstrates superior performance across multiple evaluation metrics, suggesting its effectiveness in detecting and classifying MPs contamination in holographic images.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.